{"title":"On the potential of water desalination as a proxy for energy storage systems in nuclear power plants","authors":"B. Khuwaileh, A. Ishag","doi":"10.1504/IJNEST.2019.10022535","DOIUrl":null,"url":null,"abstract":"Nuclear energy is a promising source of power, proven viable in the cogeneration of electricity and water alike. However, a major challenge for (but not limited to) nuclear power generation is the maximisation of the power plant efficiency. Operating power plants with high to maximum efficiency has a profound effect on energy prices and environmental conditions for obvious reasons. One proposed strategy is to utilise energy storage systems for later discharge of power. However, this option entails transmission losses and a considerable capital cost. Therefore, this work explores the potential of water desalination as a proxy for energy storage systems in nuclear power plants. The current work explores various water desalination technologies and compares their performance in terms of the economics, water quality and production capacity. Three case studies have been adapted including APR1400, SMART and NuScale technologies. On the desalination side, Reverse Osmosis (RO), Multi-Stage Flash (MSF), Multi-Effect Distillation (MED) and hybrid combinations were studied. Results indicate that various desalination techniques can replace energy storage systems with justifiable capital cost and yet provide fresh water with acceptable quality. Specifically, RO can use the excess power produced via nuclear reactors during low demand periods with relatively low costs, without introducing new radiation release pathways.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2019.10022535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
Nuclear energy is a promising source of power, proven viable in the cogeneration of electricity and water alike. However, a major challenge for (but not limited to) nuclear power generation is the maximisation of the power plant efficiency. Operating power plants with high to maximum efficiency has a profound effect on energy prices and environmental conditions for obvious reasons. One proposed strategy is to utilise energy storage systems for later discharge of power. However, this option entails transmission losses and a considerable capital cost. Therefore, this work explores the potential of water desalination as a proxy for energy storage systems in nuclear power plants. The current work explores various water desalination technologies and compares their performance in terms of the economics, water quality and production capacity. Three case studies have been adapted including APR1400, SMART and NuScale technologies. On the desalination side, Reverse Osmosis (RO), Multi-Stage Flash (MSF), Multi-Effect Distillation (MED) and hybrid combinations were studied. Results indicate that various desalination techniques can replace energy storage systems with justifiable capital cost and yet provide fresh water with acceptable quality. Specifically, RO can use the excess power produced via nuclear reactors during low demand periods with relatively low costs, without introducing new radiation release pathways.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.