Community Enhanced Link Prediction in Dynamic Networks

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mukesh Kumar, S. Mishra, S. Singh, Bhaskar Biswas
{"title":"Community Enhanced Link Prediction in Dynamic Networks","authors":"Mukesh Kumar, S. Mishra, S. Singh, Bhaskar Biswas","doi":"10.1145/3580513","DOIUrl":null,"url":null,"abstract":"The growing popularity of online social networks is quite evident nowadays and provides an opportunity to allow researchers in finding solutions for various practical applications. Link prediction is the technique of understanding network structure and identifying missing and future links in social networks. One of the well-known classes of methods in link prediction is a similarity-based method, which uses local and global topological information of the network to predict missing links. Some methods also exist based on quasi-local features to achieve a trade-off between local and global information on static networks. These quasi-local similarity-based methods are not best suited for considering community information in dynamic networks, failing to balance accuracy and efficiency. Therefore, a community enhanced framework is presented in this paper to predict missing links on dynamic social networks. First, a link prediction framework is presented to predict missing links using parameterized influence regions of nodes and their contribution in community partitions. Then, a unique feature set is generated using local, global, and quasi-local similarity-based as well as community information-based features. This feature set is further optimized using scoring-based feature selection methods to select only the most relevant features. Finally, four machine learning-based classification models are used for link prediction. The experiments are performed on six well-known dynamic networks and three performance metrics, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580513","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The growing popularity of online social networks is quite evident nowadays and provides an opportunity to allow researchers in finding solutions for various practical applications. Link prediction is the technique of understanding network structure and identifying missing and future links in social networks. One of the well-known classes of methods in link prediction is a similarity-based method, which uses local and global topological information of the network to predict missing links. Some methods also exist based on quasi-local features to achieve a trade-off between local and global information on static networks. These quasi-local similarity-based methods are not best suited for considering community information in dynamic networks, failing to balance accuracy and efficiency. Therefore, a community enhanced framework is presented in this paper to predict missing links on dynamic social networks. First, a link prediction framework is presented to predict missing links using parameterized influence regions of nodes and their contribution in community partitions. Then, a unique feature set is generated using local, global, and quasi-local similarity-based as well as community information-based features. This feature set is further optimized using scoring-based feature selection methods to select only the most relevant features. Finally, four machine learning-based classification models are used for link prediction. The experiments are performed on six well-known dynamic networks and three performance metrics, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.
动态网络中社区增强的链路预测
如今,在线社交网络的日益普及是相当明显的,它为研究人员提供了一个机会,让他们找到各种实际应用的解决方案。链接预测是一种理解网络结构,识别社会网络中缺失和未来链接的技术。基于相似性的链路预测方法是一种众所周知的链路预测方法,它利用网络的局部和全局拓扑信息来预测缺失链路。在静态网络中,也存在一些基于准局部特征的方法来实现局部信息和全局信息之间的权衡。这些基于准局部相似度的方法不适合考虑动态网络中的社区信息,无法平衡准确性和效率。因此,本文提出了一个社区增强框架来预测动态社会网络中的缺失环节。首先,提出了一种链路预测框架,利用节点的参数化影响区域及其在社区划分中的贡献来预测缺失链路;然后,使用基于局部、全局和准局部相似度以及基于社区信息的特征生成唯一的特征集。使用基于评分的特征选择方法进一步优化该特征集,以只选择最相关的特征。最后,使用四种基于机器学习的分类模型进行链接预测。在六个知名的动态网络和三个性能指标上进行了实验,结果表明该方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on the Web
ACM Transactions on the Web 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
26
审稿时长
7.5 months
期刊介绍: Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML. In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces. Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信