Haijing Yan, Jubin Qiao, Sen Zhang, Ting Zhao, Zhongchang Wang
{"title":"The optimal control of semi-active suspension based on improved particle swarm optimization","authors":"Haijing Yan, Jubin Qiao, Sen Zhang, Ting Zhao, Zhongchang Wang","doi":"10.21595/MME.2018.20041","DOIUrl":null,"url":null,"abstract":"For the lack of artificial experience in weighted matrix Q and R in LQR optimal control algorithm of suspension, this paper proposed an optimal control strategy based on improved particle swarm optimization for semi-active suspension system. The paper mainly established a quarter vehicle semi-active suspension system model in MatLab, and wrote the S-function of the optimal controller. In addition, this article optimized weighted coefficient matrix Q of the state variable and the weighted coefficient matrix R of the control variable in the linear quadratic regulator (LQR) [1] by utilizing the improved particle swarm optimization. The simulation results showed that the semi-active suspension system which based on the improved particle swarm optimization (IPSO) had better ride comfort and smoothness.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/MME.2018.20041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
For the lack of artificial experience in weighted matrix Q and R in LQR optimal control algorithm of suspension, this paper proposed an optimal control strategy based on improved particle swarm optimization for semi-active suspension system. The paper mainly established a quarter vehicle semi-active suspension system model in MatLab, and wrote the S-function of the optimal controller. In addition, this article optimized weighted coefficient matrix Q of the state variable and the weighted coefficient matrix R of the control variable in the linear quadratic regulator (LQR) [1] by utilizing the improved particle swarm optimization. The simulation results showed that the semi-active suspension system which based on the improved particle swarm optimization (IPSO) had better ride comfort and smoothness.