{"title":"A frictional contact problem with normal damped response conditions and thermal effects for a thermo-electro-viscoelastic material","authors":"Abdelmoumene Djabi","doi":"10.1108/ajms-08-2021-0174","DOIUrl":null,"url":null,"abstract":"PurposeThe paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress. The author establishes the existence of a unique weak solution to the problem by utilizing classical results for evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.Design/methodology/approachThe author establishes a variational formulation for the model and proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.FindingsThe author proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.Originality/valueThe author studies a mathematical problem between a thermo-electro-viscoelastic body and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response conditions and the heat exchange with a conductive foundation, which is original and requires a good understanding of modeling and mathematical tools.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-08-2021-0174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThe paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress. The author establishes the existence of a unique weak solution to the problem by utilizing classical results for evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.Design/methodology/approachThe author establishes a variational formulation for the model and proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.FindingsThe author proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.Originality/valueThe author studies a mathematical problem between a thermo-electro-viscoelastic body and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response conditions and the heat exchange with a conductive foundation, which is original and requires a good understanding of modeling and mathematical tools.