{"title":"Light-weighted vehicle detection network based on improved YOLOv3-tiny","authors":"Pingshu Ge, Lie Guo, Danni He, Liang Huang","doi":"10.1177/15501329221080665","DOIUrl":null,"url":null,"abstract":"Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221080665","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.