Light-weighted vehicle detection network based on improved YOLOv3-tiny

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Pingshu Ge, Lie Guo, Danni He, Liang Huang
{"title":"Light-weighted vehicle detection network based on improved YOLOv3-tiny","authors":"Pingshu Ge, Lie Guo, Danni He, Liang Huang","doi":"10.1177/15501329221080665","DOIUrl":null,"url":null,"abstract":"Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221080665","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.
基于改进YOLOv3-tiny的轻型车辆检测网络
车辆检测是智能车辆环境感知领域最具挑战性的研究工作之一。常用的目标检测网络过于庞大,只能在高性能服务器上实时实现。在YOLOv3-tiny的基础上,利用DarkNet-19和ResNet-18等轻量级网络实现特征提取,提高准确率。采用K-means算法对9个锚盒进行聚类,实现对小目标的多尺度预测。针对汽车应用场景,提出的车辆检测网络在嵌入式设备中执行。对KITTI数据集进行了训练和测试。实验结果表明,与传统的YOLOv3-tiny相比,平均精度提高了14.09%,达到93.66%,在嵌入式设备上可以达到13 fps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信