Priya Subramanian;Andrew J Archer;Edgar Knobloch;Alastair M Rucklidge
{"title":"Snaking without subcriticality: grain boundaries as non-topological defects","authors":"Priya Subramanian;Andrew J Archer;Edgar Knobloch;Alastair M Rucklidge","doi":"10.1093/imamat/hxab032","DOIUrl":null,"url":null,"abstract":"Non-topological defects in spatial patterns such as grain boundaries in crystalline materials arise from local variations of the pattern properties such as amplitude, wavelength and orientation. Such non-topological defects may be treated as spatially localized structures, i.e. as fronts connecting distinct periodic states. Using the two-dimensional quadratic-cubic Swift–Hohenberg equation, we obtain fully nonlinear equilibria containing grain boundaries that separate a patch of hexagons with one orientation (the grain) from an identical hexagonal state with a different orientation (the background). These grain boundaries take the form of closed curves with multiple penta-hepta defects that arise from local orientation mismatches between the two competing hexagonal structures. Multiple isolas occurring robustly over a wide range of parameters are obtained even in the absence of a unique Maxwell point, underlining the importance of retaining pinning when analysing patterns with defects, an effect omitted from the commonly used amplitude-phase description. Similar results are obtained for quasiperiodic structures in a two-scale phase-field model.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 5","pages":"1164-1180"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619538/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
Non-topological defects in spatial patterns such as grain boundaries in crystalline materials arise from local variations of the pattern properties such as amplitude, wavelength and orientation. Such non-topological defects may be treated as spatially localized structures, i.e. as fronts connecting distinct periodic states. Using the two-dimensional quadratic-cubic Swift–Hohenberg equation, we obtain fully nonlinear equilibria containing grain boundaries that separate a patch of hexagons with one orientation (the grain) from an identical hexagonal state with a different orientation (the background). These grain boundaries take the form of closed curves with multiple penta-hepta defects that arise from local orientation mismatches between the two competing hexagonal structures. Multiple isolas occurring robustly over a wide range of parameters are obtained even in the absence of a unique Maxwell point, underlining the importance of retaining pinning when analysing patterns with defects, an effect omitted from the commonly used amplitude-phase description. Similar results are obtained for quasiperiodic structures in a two-scale phase-field model.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.