{"title":"Explicit uniform bounds for Brauer groups of singular K3 surfaces","authors":"F. Balestrieri, Alexis Johnson, Rachel Newton","doi":"10.5802/aif.3526","DOIUrl":null,"url":null,"abstract":"Let $k$ be a number field. We give an explicit bound, depending only on $[k:\\mathbf{Q}]$, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of CM elliptic curves. As an application, we show that the Brauer-Manin set for such a variety is effectively computable. In addition, we prove an effective version of the strong Shafarevich conjecture for singular K3 surfaces by giving an explicit bound, depending only on $[k:\\mathbf{Q}]$, on the number of $\\mathbf{C}$-isomorphism classes of singular K3 surfaces defined over $k$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $k$ be a number field. We give an explicit bound, depending only on $[k:\mathbf{Q}]$, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of CM elliptic curves. As an application, we show that the Brauer-Manin set for such a variety is effectively computable. In addition, we prove an effective version of the strong Shafarevich conjecture for singular K3 surfaces by giving an explicit bound, depending only on $[k:\mathbf{Q}]$, on the number of $\mathbf{C}$-isomorphism classes of singular K3 surfaces defined over $k$.