Explicit uniform bounds for Brauer groups of singular K3 surfaces

IF 0.8 4区 数学 Q2 MATHEMATICS
F. Balestrieri, Alexis Johnson, Rachel Newton
{"title":"Explicit uniform bounds for Brauer groups of singular K3 surfaces","authors":"F. Balestrieri, Alexis Johnson, Rachel Newton","doi":"10.5802/aif.3526","DOIUrl":null,"url":null,"abstract":"Let $k$ be a number field. We give an explicit bound, depending only on $[k:\\mathbf{Q}]$, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of CM elliptic curves. As an application, we show that the Brauer-Manin set for such a variety is effectively computable. In addition, we prove an effective version of the strong Shafarevich conjecture for singular K3 surfaces by giving an explicit bound, depending only on $[k:\\mathbf{Q}]$, on the number of $\\mathbf{C}$-isomorphism classes of singular K3 surfaces defined over $k$.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3526","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ be a number field. We give an explicit bound, depending only on $[k:\mathbf{Q}]$, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of CM elliptic curves. As an application, we show that the Brauer-Manin set for such a variety is effectively computable. In addition, we prove an effective version of the strong Shafarevich conjecture for singular K3 surfaces by giving an explicit bound, depending only on $[k:\mathbf{Q}]$, on the number of $\mathbf{C}$-isomorphism classes of singular K3 surfaces defined over $k$.
奇异K3曲面的Brauer群的显式一致界
设$k$为数字字段。我们给出了一个仅依赖于$[k:\mathbf{Q}]$的关于K3曲面$X/k$的Brauer群大小的显式界,该曲面与CM椭圆曲线乘积上的Kummer曲面几何同构。作为一个应用,我们证明了这种变量的Brauer-Manin集是可有效计算的。此外,我们通过给出一个仅依赖于$[k:\mathbf{Q}]$的显式界,证明了奇异K3曲面的强Shafarevich猜想的一个有效版本,该显式界仅依赖于$k$上定义的奇异K3曲面的$\mathbf{C}$-同构类的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信