{"title":"Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers","authors":"","doi":"10.1016/j.inpa.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of information creates problems for Colombian small-scale farmers, as it impedes them from selling at fair prices and knowing efficient production techniques. Around the world, many technological interventions have proven helpful in reducing information asymmetries. Therefore, we proposed a technological scheme based on a genetic algorithm and a natural language processor (NLP) that enables producers to obtain knowledge through information processing. Also, we ran fieldwork in twenty municipalities and a survey among 500 Colombian cocoa small-scale farmers in different regions in Colombia. This fieldwork helps us determine small-scale farmers' necessities, market conditions, and the relevance of an Artificial Intelligence (AI) tool. The results have shown that AI methodologies could improve the economic conditions of small farmers by providing access to information on prices, weather, and production techniques. The fieldwork evidence that a technological tool is a good option only if there are dynamic trade cycles. AI tools could transmit and process information to become producers' knowledge and help them evolve into collective strategies. The methodology, which combines genetic algorithms, NLP, and fieldwork for cocoa farming, is a novelty that contributes to information asymmetry reduction. We contributed to the literature about adopting AI tools to develop cocoa small-scale farming better.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 310-324"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000458/pdfft?md5=fc59c81b0d445fce4bff213f690d8056&pid=1-s2.0-S2214317323000458-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of information creates problems for Colombian small-scale farmers, as it impedes them from selling at fair prices and knowing efficient production techniques. Around the world, many technological interventions have proven helpful in reducing information asymmetries. Therefore, we proposed a technological scheme based on a genetic algorithm and a natural language processor (NLP) that enables producers to obtain knowledge through information processing. Also, we ran fieldwork in twenty municipalities and a survey among 500 Colombian cocoa small-scale farmers in different regions in Colombia. This fieldwork helps us determine small-scale farmers' necessities, market conditions, and the relevance of an Artificial Intelligence (AI) tool. The results have shown that AI methodologies could improve the economic conditions of small farmers by providing access to information on prices, weather, and production techniques. The fieldwork evidence that a technological tool is a good option only if there are dynamic trade cycles. AI tools could transmit and process information to become producers' knowledge and help them evolve into collective strategies. The methodology, which combines genetic algorithms, NLP, and fieldwork for cocoa farming, is a novelty that contributes to information asymmetry reduction. We contributed to the literature about adopting AI tools to develop cocoa small-scale farming better.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining