{"title":"Stabilized leapfrog scheme run backward in time, and the explicit O(Δ t)2 stepwise computation of ill-posed time-reversed 2D Navier–Stokes equations","authors":"A. Carasso","doi":"10.1080/17415977.2021.1972997","DOIUrl":null,"url":null,"abstract":"Richardson's leapfrog scheme is notoriously unconditionally unstable in well-posed, forward, linear dissipative evolution equations. Remarkably, that scheme can be stabilized, marched backward in time, and provide useful reconstructions in an interesting but limited class of ill-posed, time-reversed, 2D incompressible Navier–Stokes initial value problems. Stability is achieved by applying a compensating smoothing operator at each time step to quench the instability. Eventually, this leads to a distortion away from the true solution. This is the stabilization penalty. In many interesting cases, that penalty is sufficiently small to allow for useful results. Effective smoothing operators based on , with real p>2, can be efficiently synthesized using FFT algorithms. Similar stabilizing techniques were successfully applied in several other ill-posed evolution equations. The analysis of numerical stability is restricted to a related linear problem. However, as is found in leapfrog computations of well-posed meteorological and oceanic wave propagation problems, such linear stability is necessary but not sufficient in the presence of nonlinearities. Here, likewise, additional Robert–Asselin–Williams (RAW) time-domain filtering must be used to prevent characteristic leapfrog nonlinear instability unrelated to ill-posedness. Several 2D Navier–Stokes backward reconstruction examples are included, based on the stream function-vorticity formulation, and focusing on pixel images of recognizable objects. Such images, associated with non-smooth underlying intensity data, are used to create severely distorted data at time T>0. Successful backward recovery is shown to be possible at parameter values significantly exceeding expectations.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"3062 - 3085"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1972997","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Richardson's leapfrog scheme is notoriously unconditionally unstable in well-posed, forward, linear dissipative evolution equations. Remarkably, that scheme can be stabilized, marched backward in time, and provide useful reconstructions in an interesting but limited class of ill-posed, time-reversed, 2D incompressible Navier–Stokes initial value problems. Stability is achieved by applying a compensating smoothing operator at each time step to quench the instability. Eventually, this leads to a distortion away from the true solution. This is the stabilization penalty. In many interesting cases, that penalty is sufficiently small to allow for useful results. Effective smoothing operators based on , with real p>2, can be efficiently synthesized using FFT algorithms. Similar stabilizing techniques were successfully applied in several other ill-posed evolution equations. The analysis of numerical stability is restricted to a related linear problem. However, as is found in leapfrog computations of well-posed meteorological and oceanic wave propagation problems, such linear stability is necessary but not sufficient in the presence of nonlinearities. Here, likewise, additional Robert–Asselin–Williams (RAW) time-domain filtering must be used to prevent characteristic leapfrog nonlinear instability unrelated to ill-posedness. Several 2D Navier–Stokes backward reconstruction examples are included, based on the stream function-vorticity formulation, and focusing on pixel images of recognizable objects. Such images, associated with non-smooth underlying intensity data, are used to create severely distorted data at time T>0. Successful backward recovery is shown to be possible at parameter values significantly exceeding expectations.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.