C. Diniz, R. Pires, Carolina C. M. Paraiba, P. Ferreira
{"title":"Influence Diagnostics for Correlated Binomial Regression Models: An Application to a Data Set on High-Cost Health Services Occurrence","authors":"C. Diniz, R. Pires, Carolina C. M. Paraiba, P. Ferreira","doi":"10.15446/RCE.V44N2.85606","DOIUrl":null,"url":null,"abstract":"This paper considers a frequentist perspective to deal with the class of correlated binomial regression models (Pires & Diniz, 2012), thus providing a new approach to analyze correlated binary response variables. Model parameters are estimated by direct maximization of the log-likelihood function. We also consider a diagnostic analysis under the correlated binomial regression model setup, which is performed considering residuals based on predictive values and deviance residuals (Cook & Weisberg, 1982) to check for model assumptions, and global in˛uence measure based on case-deletion (Cook, 1977) to detect in˛uential observations. Moreover, a sensitivity analysis is carried out to detect possible in˛uential observations that could a˙ect the inferential results. This is done using local in˛uence metrics (Cook, 1986) with case-weight, response, and covariate perturbation schemes. A simulation study is conducted to assess the frequentist properties of model parameter estimates and check the performance of the considered diagnostic metrics under the correlated binomial regression model. A data set on high-cost claims made to a private health care provider in Brazil is analyzed to illustrate the proposed methodology.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V44N2.85606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers a frequentist perspective to deal with the class of correlated binomial regression models (Pires & Diniz, 2012), thus providing a new approach to analyze correlated binary response variables. Model parameters are estimated by direct maximization of the log-likelihood function. We also consider a diagnostic analysis under the correlated binomial regression model setup, which is performed considering residuals based on predictive values and deviance residuals (Cook & Weisberg, 1982) to check for model assumptions, and global in˛uence measure based on case-deletion (Cook, 1977) to detect in˛uential observations. Moreover, a sensitivity analysis is carried out to detect possible in˛uential observations that could a˙ect the inferential results. This is done using local in˛uence metrics (Cook, 1986) with case-weight, response, and covariate perturbation schemes. A simulation study is conducted to assess the frequentist properties of model parameter estimates and check the performance of the considered diagnostic metrics under the correlated binomial regression model. A data set on high-cost claims made to a private health care provider in Brazil is analyzed to illustrate the proposed methodology.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.