Study on the cleanliness of super clean coal prepared by water-only cyclone

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
Peikun Liu, Hui Wang, Lanyue Jiang, Yuekan Zhang, Xinghua Yang, Xiaoyu Li, Feng Li
{"title":"Study on the cleanliness of super clean coal prepared by water-only cyclone","authors":"Peikun Liu, Hui Wang, Lanyue Jiang, Yuekan Zhang, Xinghua Yang, Xiaoyu Li, Feng Li","doi":"10.37190/ppmp/168129","DOIUrl":null,"url":null,"abstract":"Maintaining clean and pristine nature is the key to the use of super clean coal (SCC) for coal-based materials or energy combustion. Herein, SCC is prepared by a new water-only cyclone method, and compared the surface characteristics with the SCC products obtained by conventional chemical deashing method. The results indicate that: FTIR analysis revealed that the chemical method changed the original functional group of coal; BET analysis revealed that the SCC products prepared by the water-only method maintained the micropore volume of the raw coal and yielded a uniform and concentrated distribution of pore sizes, however, the chemical method destroying the original pore structure in the coal; SEM-EDS analysis indicated that the surface of SCC particles that were deashed using the water-only cyclone method was smooth and neat, whereas those obtained using the chemical method were seriously corroded, had a rough surface, and the SCC particles were prone to acid residues and precipitates. This study opens an innovative, simple, and clean method for the preparation of SCC, which further expands and enhances the potential application value of SCC.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/168129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining clean and pristine nature is the key to the use of super clean coal (SCC) for coal-based materials or energy combustion. Herein, SCC is prepared by a new water-only cyclone method, and compared the surface characteristics with the SCC products obtained by conventional chemical deashing method. The results indicate that: FTIR analysis revealed that the chemical method changed the original functional group of coal; BET analysis revealed that the SCC products prepared by the water-only method maintained the micropore volume of the raw coal and yielded a uniform and concentrated distribution of pore sizes, however, the chemical method destroying the original pore structure in the coal; SEM-EDS analysis indicated that the surface of SCC particles that were deashed using the water-only cyclone method was smooth and neat, whereas those obtained using the chemical method were seriously corroded, had a rough surface, and the SCC particles were prone to acid residues and precipitates. This study opens an innovative, simple, and clean method for the preparation of SCC, which further expands and enhances the potential application value of SCC.
纯水旋流器制备超洁净煤的洁净度研究
保持清洁和原始的自然是使用超清洁煤(SCC)用于煤基材料或能源燃烧的关键。本文采用一种新的纯水旋流法制备了SCC,并将其表面特性与传统化学除灰法获得的SCC产物进行了比较。结果表明:FTIR分析表明,化学方法改变了煤原有的官能团;BET分析表明,无水法制备的SCC产物保持了原煤的微孔体积,孔径分布均匀集中,但化学法破坏了煤中原有的孔结构;SEM-EDS分析表明,使用纯水旋流器方法去除的SCC颗粒表面光滑整洁,而使用化学方法获得的SCC颗粒腐蚀严重,表面粗糙,并且SCC颗粒容易产生酸残留物和沉淀物。本研究为SCC的制备开辟了一种创新、简单、清洁的方法,进一步拓展和提高了SCC的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信