{"title":"Short-term load forecasting based on EEMD-Adaboost-BP","authors":"Wenshuai Lin, Bin Zhang, Hongyi Li, Renquan Lu","doi":"10.1080/21642583.2022.2110539","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to realize short-time load forecasting, an Adaboost-BP method with a weight update mechanism is proposed based on ensemble learning theory. Firstly, the original historical load power is decomposed into a set of sub-series with diverse characteristics via using ensemble empirical mode decomposition. Then, BP neural network is performed as a weak learner to predict the load power of test samples. At the same time, the prediction results are used to update the weight of the weak learner and test sample and then construct a strong learner to obtain the final prediction results. According to the analysis results of the characteristics of each sub-series, the load forecasting model is established. The result of analysing the calculation example shows that the proposed prediction model outperforms all other algorithms in accuracy, which has high engineering application value.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2110539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT In order to realize short-time load forecasting, an Adaboost-BP method with a weight update mechanism is proposed based on ensemble learning theory. Firstly, the original historical load power is decomposed into a set of sub-series with diverse characteristics via using ensemble empirical mode decomposition. Then, BP neural network is performed as a weak learner to predict the load power of test samples. At the same time, the prediction results are used to update the weight of the weak learner and test sample and then construct a strong learner to obtain the final prediction results. According to the analysis results of the characteristics of each sub-series, the load forecasting model is established. The result of analysing the calculation example shows that the proposed prediction model outperforms all other algorithms in accuracy, which has high engineering application value.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory