Hyperpolarization and the physical boundary of Liouville space.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2021-06-08 eCollection Date: 2021-01-01 DOI:10.5194/mr-2-395-2021
Malcolm H Levitt, Christian Bengs
{"title":"Hyperpolarization and the physical boundary of Liouville space.","authors":"Malcolm H Levitt,&nbsp;Christian Bengs","doi":"10.5194/mr-2-395-2021","DOIUrl":null,"url":null,"abstract":"<p><p>The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":" ","pages":"395-407"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539761/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-395-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I=1/2, I=1, I=3/2 and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.

Abstract Image

Abstract Image

Abstract Image

超极化与刘维尔空间的物理边界
摘要自旋系综的量子态由密度算子描述,密度算子对应于正交自旋算子的Liouville空间中的一个点。有效的密度算符被限制在Liouville空间的一个特定区域,我们称之为物理区域,它被称为简单体的多维图形所包围。单纯形的每个顶点对应于一个纯态密度算子。我们给出了自旋I = 1/2, I = 1, I = 3 /2和自旋-1/2耦合对的例子。我们使用冯·诺伊曼熵作为超极化的标准。结果表明,自旋动力学的非齐次主方程在某些情况下会导致非物理结果,而使用Lindbladian主方程可以避免这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信