Neural prediction model for transition onset of a boundary layer in presence of two-dimensional surface defects

IF 2.8 Q2 MECHANICS
Adrien Rouviere, L. Pascal, F. Méry, E. Simon, S. Gratton
{"title":"Neural prediction model for transition onset of a boundary layer in presence of two-dimensional surface defects","authors":"Adrien Rouviere, L. Pascal, F. Méry, E. Simon, S. Gratton","doi":"10.1017/flo.2023.17","DOIUrl":null,"url":null,"abstract":"Abstract Predicting the laminar to turbulent transition is an important aspect of computational fluid dynamics because of its impact on skin friction. Traditional transition prediction methods such as local stability theory or the parabolized stability equation method do not allow for the consideration of strongly non-parallel boundary layer flows, as in the presence of surface defects (bumps, steps, gaps, etc.). A neural network approach, based on an extensive database of two-dimensional incompressible boundary layer stability studies in the presence of gap-like surface defects, is used. These studies consist of linearized Navier–Stokes calculations and provide information on the effect of surface irregularity geometry and aerodynamic conditions on the transition to turbulence. The physical and geometrical parameters characterizing the defect and the flow are then provided to a neural network whose outputs inform about the effect of a given gap on the transition through the ${\\rm \\Delta} N$ method (where N represents the amplification of the boundary layer instabilities).","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Predicting the laminar to turbulent transition is an important aspect of computational fluid dynamics because of its impact on skin friction. Traditional transition prediction methods such as local stability theory or the parabolized stability equation method do not allow for the consideration of strongly non-parallel boundary layer flows, as in the presence of surface defects (bumps, steps, gaps, etc.). A neural network approach, based on an extensive database of two-dimensional incompressible boundary layer stability studies in the presence of gap-like surface defects, is used. These studies consist of linearized Navier–Stokes calculations and provide information on the effect of surface irregularity geometry and aerodynamic conditions on the transition to turbulence. The physical and geometrical parameters characterizing the defect and the flow are then provided to a neural network whose outputs inform about the effect of a given gap on the transition through the ${\rm \Delta} N$ method (where N represents the amplification of the boundary layer instabilities).
二维表面缺陷存在时边界层跃迁起始的神经网络预测模型
层流到湍流的过渡对表面摩擦的影响是计算流体力学的一个重要方面。传统的过渡预测方法,如局部稳定性理论或抛物稳定性方程方法,不允许考虑强非平行边界层流动,如存在表面缺陷(凸起、台阶、间隙等)。神经网络的方法,基于广泛的数据库二维不可压缩边界层稳定性研究的存在类似缝隙的表面缺陷,被使用。这些研究包括线性化的Navier-Stokes计算,并提供了表面不规则几何形状和气动条件对过渡到湍流的影响的信息。然后将表征缺陷和流动的物理和几何参数提供给神经网络,该神经网络的输出通过${\rm \Delta} N$方法(其中N表示边界层不稳定性的放大)告知给定间隙对过渡的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信