The Graham-Hoffman-Hosoya-type theorems for the exponential distance matrix

IF 0.7 4区 数学 Q2 Mathematics
Z. Du, Rundan Xing
{"title":"The Graham-Hoffman-Hosoya-type theorems for the exponential distance matrix","authors":"Z. Du, Rundan Xing","doi":"10.13001/ela.2023.7449","DOIUrl":null,"url":null,"abstract":"Let $G$ be a strongly connected digraph with vertex set $\\{v_1, v_2, \\dots, v_n\\}$. Denote by $D_{ij}$ the distance between vertices $v_i$ and $v_j$ in $G$. Two variant versions of the distance matrix were proposed by Yan and Yeh (Adv. Appl. Math.), and Bapat et al.  (Linear Algebra Appl.) independently, one is the $q$-distance matrix, and the other is the exponential distance matrix. Given a nonzero indeterminate $q$, the $q$-distance matrix $\\mathscr{D}_G=(\\mathscr{D}_{ij})_{n\\times n}$ of $G$ is defined as\\[\\mathscr{D}_{ij}=\\left\\{\\begin{array}{cl}1+q+\\dots+q^{D_{ij}-1}&\\text{if $i\\ne j$},\\\\0&\\text{otherwise}.\\end{array}\\right.\\]In particular, when $q = 1$, it would be reduced to the distance matrix of $G$. The exponential distance matrix $\\mathscr{F}_G=(\\mathscr{F}_{ij})_{n\\times n}$ of $G$ is defined as\\[\\mathscr{F}_{ij}= q^{D_{ij}}.\\] In $1977$, Graham et al.  (J. Graph Theory) established a classical formula connecting the determinants and cofactor sums of the distance matrices of strongly connected digraphs in terms of their blocks, which plays a powerful role in the subsequent researches on the determinants of distance matrices. Sivasubramanian (Electron. J. Combin.) and Li  et al. (Discuss. Math. Graph Theory) independently extended it from the distance matrix to the $q$-distance matrix. In this note, three formulae of such types for the exponential distance matrices of strongly connected digraphs will be presented.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7449","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a strongly connected digraph with vertex set $\{v_1, v_2, \dots, v_n\}$. Denote by $D_{ij}$ the distance between vertices $v_i$ and $v_j$ in $G$. Two variant versions of the distance matrix were proposed by Yan and Yeh (Adv. Appl. Math.), and Bapat et al.  (Linear Algebra Appl.) independently, one is the $q$-distance matrix, and the other is the exponential distance matrix. Given a nonzero indeterminate $q$, the $q$-distance matrix $\mathscr{D}_G=(\mathscr{D}_{ij})_{n\times n}$ of $G$ is defined as\[\mathscr{D}_{ij}=\left\{\begin{array}{cl}1+q+\dots+q^{D_{ij}-1}&\text{if $i\ne j$},\\0&\text{otherwise}.\end{array}\right.\]In particular, when $q = 1$, it would be reduced to the distance matrix of $G$. The exponential distance matrix $\mathscr{F}_G=(\mathscr{F}_{ij})_{n\times n}$ of $G$ is defined as\[\mathscr{F}_{ij}= q^{D_{ij}}.\] In $1977$, Graham et al.  (J. Graph Theory) established a classical formula connecting the determinants and cofactor sums of the distance matrices of strongly connected digraphs in terms of their blocks, which plays a powerful role in the subsequent researches on the determinants of distance matrices. Sivasubramanian (Electron. J. Combin.) and Li  et al. (Discuss. Math. Graph Theory) independently extended it from the distance matrix to the $q$-distance matrix. In this note, three formulae of such types for the exponential distance matrices of strongly connected digraphs will be presented.
指数距离矩阵的graham - hoffman - hosoya型定理
设$G$是一个强连通有向图,其顶点集为$\{v_1,v_2,\dots,v_n\}$。用$D_{ij}$表示$G$中顶点$v_i$和$v_j$之间的距离。Yan和Yeh(Adv.Appl.Math.)以及Bapat等人(线性代数应用)独立提出了距离矩阵的两个变体版本,一个是$q$-距离矩阵,另一个是指数距离矩阵。给定一个非零的不确定$q$,$q$-距离矩阵$\mathscr{D}_G=(\mathscr{D}_{ij})_{n\times n}$定义为\[\mathscr{D}_{ij}=\left\{\begin{array}{cl}1+q+\dots+q^{D_{ij}-1}&\text{if$i\ne j$},\\0&\text{others}。\end{array}\right。\]特别地,当$q=1$时,它将被简化为$G$的距离矩阵。指数距离矩阵$\mathscr{F}_G=(\mathscr{F}_{ij})_{n\times n}$定义为\[\mathscr{F}_{ij}=q^{D_{ij}}。\]Graham等人(J.Graph Theory)在1977年建立了一个经典公式,将强连通有向图的距离矩阵的行列式和辅因子和用它们的块连接起来,这对随后关于距离矩阵行列式的研究起到了强有力的作用。Sivasubramanian(Electron.J.Combin..)和Li等人(讨论.数学.图论)独立地将其从距离矩阵扩展到$q$-距离矩阵。本文给出了强连通有向图的指数距离矩阵的三个这类公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信