A. Trimulyono, H. Atthariq, D. Chrismianto, Samuel Samuel
{"title":"INVESTIGATION OF SLOSHING IN THE PRISMATIC TANK WITH VERTICAL AND T-SHAPE BAFFLES","authors":"A. Trimulyono, H. Atthariq, D. Chrismianto, Samuel Samuel","doi":"10.21278/brod73203","DOIUrl":null,"url":null,"abstract":"The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in recent years. One of the most common types of LNG carriers is the membrane type, which is often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with the experiment. The results show that SPH has an acceptable accuracy for dynamic and hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic pressure and hydrodynamic force.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 6
Abstract
The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in recent years. One of the most common types of LNG carriers is the membrane type, which is often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with the experiment. The results show that SPH has an acceptable accuracy for dynamic and hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic pressure and hydrodynamic force.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.