AN OBSERVATION ON THE DIRICHLET PROBLEM AT INFINITY IN RIEMANNIAN CONES

Pub Date : 2021-11-22 DOI:10.1017/nmj.2022.31
J. Cortissoz
{"title":"AN OBSERVATION ON THE DIRICHLET PROBLEM AT INFINITY IN RIEMANNIAN CONES","authors":"J. Cortissoz","doi":"10.1017/nmj.2022.31","DOIUrl":null,"url":null,"abstract":"Abstract In this short paper, we show a sufficient condition for the solvability of the Dirichlet problem at infinity in Riemannian cones (as defined below). This condition is related to a celebrated result of Milnor that classifies parabolic surfaces. When applied to smooth Riemannian manifolds with a special type of metrics, which generalize the class of metrics with rotational symmetry, we obtain generalizations of classical criteria for the solvability of the Dirichlet problem at infinity. Our proof is short and elementary: it uses separation of variables and comparison arguments for ODEs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this short paper, we show a sufficient condition for the solvability of the Dirichlet problem at infinity in Riemannian cones (as defined below). This condition is related to a celebrated result of Milnor that classifies parabolic surfaces. When applied to smooth Riemannian manifolds with a special type of metrics, which generalize the class of metrics with rotational symmetry, we obtain generalizations of classical criteria for the solvability of the Dirichlet problem at infinity. Our proof is short and elementary: it uses separation of variables and comparison arguments for ODEs.
分享
查看原文
黎曼锥无穷远处狄利克雷问题的观察
摘要在这篇短文中,我们给出了黎曼锥(定义如下)中无穷远Dirichlet问题可解的一个充分条件。这个条件与Milnor对抛物曲面进行分类的一个著名结果有关。当应用于具有一类特殊度量的光滑黎曼流形时,推广了具有旋转对称性的度量类,我们得到了Dirichlet问题在无穷远处可解性的经典准则的推广。我们的证明是简短而基本的:它使用了变量的分离和ODE的比较自变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信