On finite-by-nilpotent profinite groups

IF 0.7 Q2 MATHEMATICS
E. Detomi, M. Morigi
{"title":"On finite-by-nilpotent profinite groups","authors":"E. Detomi, M. Morigi","doi":"10.22108/IJGT.2019.119581.1577","DOIUrl":null,"url":null,"abstract":"Let $gamma_n=[x_1,ldots,x_n]$ be the $n$th lower central word‎. ‎Suppose that $G$ is a profinite group‎ ‎where the conjugacy classes $x^{gamma_n(G)}$ contains less than $2^{aleph_0}$‎ ‎elements‎ ‎for any $x in G$‎. ‎We prove that then $gamma_{n+1}(G)$ has finite order‎. ‎This generalizes the much celebrated‎ ‎theorem of B‎. ‎H‎. ‎Neumann that says that the commutator subgroup of a BFC-group is finite‎. ‎Moreover‎, ‎it implies that‎ ‎a profinite group $G$ is finite-by-nilpotent if and only if there is a positive integer $n$ such that‎ ‎$x^{gamma_n(G)}$ contains less than $2^{aleph_0}$‎ ‎elements‎, ‎for any $xin G$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2019.119581.1577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $gamma_n=[x_1,ldots,x_n]$ be the $n$th lower central word‎. ‎Suppose that $G$ is a profinite group‎ ‎where the conjugacy classes $x^{gamma_n(G)}$ contains less than $2^{aleph_0}$‎ ‎elements‎ ‎for any $x in G$‎. ‎We prove that then $gamma_{n+1}(G)$ has finite order‎. ‎This generalizes the much celebrated‎ ‎theorem of B‎. ‎H‎. ‎Neumann that says that the commutator subgroup of a BFC-group is finite‎. ‎Moreover‎, ‎it implies that‎ ‎a profinite group $G$ is finite-by-nilpotent if and only if there is a positive integer $n$ such that‎ ‎$x^{gamma_n(G)}$ contains less than $2^{aleph_0}$‎ ‎elements‎, ‎for any $xin G$‎.
在有限幂零无限群上
设$gamma_n=[x_1,ldots,x_n]$为第n个中下单词。假设$G$是一个无限群,其中共轭类$x^{gamma_n(G)}$包含小于$2^{aleph_0}$ $的元素。我们证明了$gamma_{n+1}(G)$具有有限阶。这推广了著名的定理B。‎‎。Neumann认为bfc群的换向子群是有限的。而且,它暗示了一个无限群$G$是幂零有限的当且仅当存在一个正整数$n$使得$x^{gamma_n(G)}$包含少于$2^{aleph_0}$ $的元素,对于任意$ xing $ $ $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信