{"title":"Localization in optical systems with an intensity-dependent dispersion","authors":"R. M. Ross, P. Kevrekidis, Dmitry E. Pelinovsky","doi":"10.1090/QAM/1596","DOIUrl":null,"url":null,"abstract":"We address the nonlinear Schrodinger equation with intensity-dependent dispersion which was recently proposed in the context of nonlinear optical systems. Contrary to the previous findings, we prove that no solitary wave solutions exist if the sign of the intensity-dependent dispersion coincides with the sign of the constant dispersion, whereas a continuous family of such solutions exists in the case of the opposite signs. The family includes two particular solutions, namely cusped and bell-shaped solitons, where the former represents the lowest energy state in the family and the latter is a limit of solitary waves in a regularized system. We further analyze the delicate analytical properties of these solitary waves such as the asymptotic behavior near singularities, the spectral stability, and the convergence of the fixed-point iterations near such solutions. The analytical theory is corroborated by means of numerical approximations.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/QAM/1596","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
We address the nonlinear Schrodinger equation with intensity-dependent dispersion which was recently proposed in the context of nonlinear optical systems. Contrary to the previous findings, we prove that no solitary wave solutions exist if the sign of the intensity-dependent dispersion coincides with the sign of the constant dispersion, whereas a continuous family of such solutions exists in the case of the opposite signs. The family includes two particular solutions, namely cusped and bell-shaped solitons, where the former represents the lowest energy state in the family and the latter is a limit of solitary waves in a regularized system. We further analyze the delicate analytical properties of these solitary waves such as the asymptotic behavior near singularities, the spectral stability, and the convergence of the fixed-point iterations near such solutions. The analytical theory is corroborated by means of numerical approximations.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.