Improvement of the optical properties after surface error correction of aluminium mirror surfaces

IF 1.9 4区 物理与天体物理 Q3 OPTICS
M. Ulitschka, J. Bauer, F. Frost, T. Arnold
{"title":"Improvement of the optical properties after surface error correction of aluminium mirror surfaces","authors":"M. Ulitschka,&nbsp;J. Bauer,&nbsp;F. Frost,&nbsp;T. Arnold","doi":"10.1186/s41476-020-00143-6","DOIUrl":null,"url":null,"abstract":"<p>Ion beam finishing techniques of aluminium mirrors have a high potential to meet the increasing demands on applications of high-performance mirror devices for visible and ultraviolet spectral range. Reactively driven ion beam machining using oxygen and nitrogen gases enables the direct figure error correction up to 1?μm machining depth while preserving the initial roughness. However, the periodic turning mark structures, which result from preliminary device shaping by single-point diamond turning, often limit the applicability of mirror surfaces in the short-periodic spectral range. Ion beam planarization with the aid of a sacrificial layer is a promising process route for surface smoothing, resulting in successfully reduction of the turning mark structures. A combination with direct surface smoothing to perform a subsequent improvement of the microroughness is presented with a special focus on roughness evolution, chemical composition, and optical surface properties. As a result, an ion beam based process route is suggested, which allows almost to recover the reflective properties and an increased long-term stability of smoothed aluminium surfaces.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00143-6","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00143-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Ion beam finishing techniques of aluminium mirrors have a high potential to meet the increasing demands on applications of high-performance mirror devices for visible and ultraviolet spectral range. Reactively driven ion beam machining using oxygen and nitrogen gases enables the direct figure error correction up to 1?μm machining depth while preserving the initial roughness. However, the periodic turning mark structures, which result from preliminary device shaping by single-point diamond turning, often limit the applicability of mirror surfaces in the short-periodic spectral range. Ion beam planarization with the aid of a sacrificial layer is a promising process route for surface smoothing, resulting in successfully reduction of the turning mark structures. A combination with direct surface smoothing to perform a subsequent improvement of the microroughness is presented with a special focus on roughness evolution, chemical composition, and optical surface properties. As a result, an ion beam based process route is suggested, which allows almost to recover the reflective properties and an increased long-term stability of smoothed aluminium surfaces.

Abstract Image

铝镜面表面误差修正后光学性能的改善
铝反射镜离子束精加工技术在满足高性能反射镜器件在可见和紫外光谱范围内日益增长的应用需求方面具有很大的潜力。使用氧气和氮气的反应驱动离子束加工可实现高达1?μm的加工深度,同时保持初始粗糙度。然而,由单点金刚石车削初步成形的器件形成的周期性车削标记结构,往往限制了镜面在短周期光谱范围内的适用性。牺牲层辅助离子束平面化是一种很有前途的表面光滑工艺路线,可以成功地减少转向标记结构。结合直接表面平滑来执行微粗糙度的后续改进,特别关注粗糙度演变,化学成分和光学表面特性。因此,提出了一种基于离子束的工艺路线,它几乎可以恢复反射特性,并增加了光滑铝表面的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信