Analisis Klasterisasi Malware: Evaluasi Data Training Dalam Proses Klasifikasi Malware

Denar Regata Akbi, A. Rosyadi
{"title":"Analisis Klasterisasi Malware: Evaluasi Data Training Dalam Proses Klasifikasi Malware","authors":"Denar Regata Akbi, A. Rosyadi","doi":"10.31961/ELTIKOM.V2I2.88","DOIUrl":null,"url":null,"abstract":"Data latih merupakan salah satu bagian penting pada proses klasifikasi. Terutama jika data tersebut digunakan untuk membuat sistem pendeteksi malware. Penelitian ini melakukan perbandingan data latih yang dihasilkan dari dua penelitian yang telah dilakukan sebelumnya, data yang digunakan pada kedua penelitian tersebut merupakan data malware android berdasarkan frekuensi system call sejumlah 600 data. Penelitian pertama melakukan klasifikasi dan menghasilkan 4 jenis malware, sedangkan penelitian kedua melakukan klastering dan menghasilkan 8 klaster. Dari kedua penelitian tersebut, peneliti melakukan evaluasi data latih dari masing - masing penelitian untuk mendapatkan hasil data latih yang lebih akurat, dengan menggunakan data uji sejumlah 50, peneliti melakukan evaluasi dan uji coba dengan menggunakan algoritme kNN. Hasil yang didapatkan, penggunaan data latih berdasarkan hasil klastering pada proses klasifikasi lebih direkomendasikan, hasil Error Prediction penelitian pertama: 0,995 sedangkan pada penelitian kedua: 0,998. Hasil Recall dan akurasi menggunakan metode cross validation, penelitian pertama, Recall: 0,665 akurasi: 0,66, penelitian kedua, Recall: 0,893 akurasi: 0,89, sedangkan Hasil Recall dan akurasi menggunakan metode precentage split, penelitian pertama, Recall: 0,657 akurasi: 0,65, penelitian kedua, Recall: 0,798 akurasi: 0,79. Berdasarkan hasil pengujian, proses klastering yang menggunakan data frekuensi system call malware menghasilkan data latih yang lebih akurat dibandingkan dengan data latih yang dihasilkan dengan menggunakan suatu situs penamaan malware.","PeriodicalId":33096,"journal":{"name":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31961/ELTIKOM.V2I2.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data latih merupakan salah satu bagian penting pada proses klasifikasi. Terutama jika data tersebut digunakan untuk membuat sistem pendeteksi malware. Penelitian ini melakukan perbandingan data latih yang dihasilkan dari dua penelitian yang telah dilakukan sebelumnya, data yang digunakan pada kedua penelitian tersebut merupakan data malware android berdasarkan frekuensi system call sejumlah 600 data. Penelitian pertama melakukan klasifikasi dan menghasilkan 4 jenis malware, sedangkan penelitian kedua melakukan klastering dan menghasilkan 8 klaster. Dari kedua penelitian tersebut, peneliti melakukan evaluasi data latih dari masing - masing penelitian untuk mendapatkan hasil data latih yang lebih akurat, dengan menggunakan data uji sejumlah 50, peneliti melakukan evaluasi dan uji coba dengan menggunakan algoritme kNN. Hasil yang didapatkan, penggunaan data latih berdasarkan hasil klastering pada proses klasifikasi lebih direkomendasikan, hasil Error Prediction penelitian pertama: 0,995 sedangkan pada penelitian kedua: 0,998. Hasil Recall dan akurasi menggunakan metode cross validation, penelitian pertama, Recall: 0,665 akurasi: 0,66, penelitian kedua, Recall: 0,893 akurasi: 0,89, sedangkan Hasil Recall dan akurasi menggunakan metode precentage split, penelitian pertama, Recall: 0,657 akurasi: 0,65, penelitian kedua, Recall: 0,798 akurasi: 0,79. Berdasarkan hasil pengujian, proses klastering yang menggunakan data frekuensi system call malware menghasilkan data latih yang lebih akurat dibandingkan dengan data latih yang dihasilkan dengan menggunakan suatu situs penamaan malware.
恶意软件分析:在恶意软件分类过程中对培训数据进行评估
培训数据是分类过程中很重要的一部分。特别是如果这些数据被用来建立恶意软件检测系统。该研究对之前进行的两项研究中产生的培训数据进行了比较,在这两项研究中使用的数据都是基于频率系统呼叫系统的android恶意软件数据,共有600个数据。第一种研究进行分类,产生4种恶意软件,而第二种研究进行分类,产生8种恶意软件。在这两项研究中,研究人员对每一项研究进行培训数据评估,以获得更准确的数据,研究人员使用50组测试数据,使用kNN算法进行评估和测试。所取得的结果是根据建议的分类过程的聚类数据使用,第一项研究的预测错误:0.995,而第二项研究:0.998。通过交叉验证方法,第一项研究,恢复:0.665准确性:66,第二项研究,恢复:0.893准确性:0.89,而Recall的结果和准确性使用precentage方法,第一项研究,Recall: 0.657准确性:0.65,第二研究,Recall: 0.798准确性:0.79。根据测试结果,使用系统呼叫恶意软件频率数据的集群处理产生的培训数据比使用一个指定的恶意软件站点产生的培训数据更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信