Inverse coefficient problem for differential equation in partial derivatives of a fourth order in time with integral over-determination

IF 0.7 Q2 MATHEMATICS
M. J. Huntul, I. Tekin
{"title":"Inverse coefficient problem for differential equation in partial derivatives of a fourth order in time with integral over-determination","authors":"M. J. Huntul, I. Tekin","doi":"10.31489/2022m4/51-59","DOIUrl":null,"url":null,"abstract":"Derivatives in time of higher order (more than two) arise in various fields such as acoustics, medical ultrasound, viscoelasticity and thermoelasticity. The inverse problems for higher order derivatives in time equations connected with recovery of the coefficient are scarce and need additional consideration. In this article the inverse problem of determination is considered which depends on time, lowest term coefficient in differential equation in partial derivatives of fourth order in time with initial and boundary conditions from an additional integral observation is considered. Under some conditions regularity, consistency and orthogonality of data by using of the contraction principle the unique solvability of the solution of the coefficient identification problem on a sufficiently small time interval has been proved.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m4/51-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Derivatives in time of higher order (more than two) arise in various fields such as acoustics, medical ultrasound, viscoelasticity and thermoelasticity. The inverse problems for higher order derivatives in time equations connected with recovery of the coefficient are scarce and need additional consideration. In this article the inverse problem of determination is considered which depends on time, lowest term coefficient in differential equation in partial derivatives of fourth order in time with initial and boundary conditions from an additional integral observation is considered. Under some conditions regularity, consistency and orthogonality of data by using of the contraction principle the unique solvability of the solution of the coefficient identification problem on a sufficiently small time interval has been proved.
具有积分过定的四阶时间偏导数微分方程的反系数问题
高阶(两阶以上)时间导数出现在声学、医学超声、粘弹性和热弹性等各个领域。时间方程中与系数恢复有关的高阶导数的逆问题很少,需要额外考虑。本文考虑了取决于时间的判定反问题,考虑了附加积分观测的四阶时间偏导数微分方程中具有初始和边界条件的最低项系数。在一定条件下,利用收缩原理,证明了系数辨识问题在足够小的时间间隔上解的唯一可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信