Common hypercyclic vectors for unilateral weighted shifts on ℓ2

IF 0.7 4区 数学 Q2 MATHEMATICS
Konstantinos A. Beros, P. Larson
{"title":"Common hypercyclic vectors for unilateral weighted shifts on ℓ2","authors":"Konstantinos A. Beros, P. Larson","doi":"10.7900/jot.202jul23.2345","DOIUrl":null,"url":null,"abstract":"Each w∈ℓ∞ defines a bacwards weighted shift Bw:ℓ2→ℓ2. A vector x∈ℓ2 is \\textit{hypercyclic} for Bw if the set of forward iterates of x is dense in ℓ2. For each such w, the set HC(w) consisting of all vectors hypercyclic for Bw is Gδ. The set of \\textit{common hypercyclic vectors} for a set W⊆ℓ∞ is the set HC∗(W)=⋂w∈WHC(w). We show that HC∗(W) can be made arbitrarily complicated by making W sufficiently complex, and that even for a Gδ set W the set HC∗(W) can be non-Borel. Finally, by assuming the continuum hypothesis or Martin's axiom, we are able to construct a set W such that HC∗(W) does not have the property of Baire.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.202jul23.2345","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Each w∈ℓ∞ defines a bacwards weighted shift Bw:ℓ2→ℓ2. A vector x∈ℓ2 is \textit{hypercyclic} for Bw if the set of forward iterates of x is dense in ℓ2. For each such w, the set HC(w) consisting of all vectors hypercyclic for Bw is Gδ. The set of \textit{common hypercyclic vectors} for a set W⊆ℓ∞ is the set HC∗(W)=⋂w∈WHC(w). We show that HC∗(W) can be made arbitrarily complicated by making W sufficiently complex, and that even for a Gδ set W the set HC∗(W) can be non-Borel. Finally, by assuming the continuum hypothesis or Martin's axiom, we are able to construct a set W such that HC∗(W) does not have the property of Baire.
上单边加权移位的公共超循环向量ℓ2.
每个w∈r∞定义了一个向后加权移位Bw: r 2→r 2。如果x的前向迭代集在l2中是密集的,则向量x∈l2对于Bw是\textit{超循环}的。对于每一个这样的w,由Bw的所有超环向量组成的集合HC(w)为Gδ。集W∈WHC(W)的\textit{公共超循环向量}集为集HC∗(W)= W∈WHC(W)。我们证明了HC∗(W)可以通过使W足够复杂而变得任意复杂,并且即使对于Gδ集W,集HC∗(W)也可以是非borel的。最后,通过假设连续统假设或马丁公理,我们能够构造一个集合W,使得HC * (W)不具有贝尔性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信