Estimating the number of limit cycles for one step perturbed homogeneous degenerate centers

Q3 Mathematics
Extracta Mathematicae Volumen, M. MolaeiDerakhtenjani, O. RabieiMotlagh, H. Mohammadinejad
{"title":"Estimating the number of limit cycles for one step perturbed homogeneous degenerate centers","authors":"Extracta Mathematicae Volumen, M. MolaeiDerakhtenjani, O. RabieiMotlagh, H. Mohammadinejad","doi":"10.17398/2605-5686.38.1.85","DOIUrl":null,"url":null,"abstract":"We consider a homogeneous degenerate center of order 2m + 1 and perturb it by a homogeneous polynomial of order 2m. We study the Lyapunov constants around the origin to estimate the number of limit cycles. To do it, we classify the parameters and study their effect on the number of limit cycles. Finally, we find that the perturbed degenerate center without any condition has at least two limit cycles, and the number of the bifurcated limit cycles could reach 2m + 3.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.38.1.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a homogeneous degenerate center of order 2m + 1 and perturb it by a homogeneous polynomial of order 2m. We study the Lyapunov constants around the origin to estimate the number of limit cycles. To do it, we classify the parameters and study their effect on the number of limit cycles. Finally, we find that the perturbed degenerate center without any condition has at least two limit cycles, and the number of the bifurcated limit cycles could reach 2m + 3.
一步摄动齐次退化中心极限环数的估计
我们考虑一个阶为2m + 1的齐次退化中心,并用一个阶为2m的齐次多项式来扰动它。我们研究了原点周围的李雅普诺夫常数来估计极限环的数目。为此,我们对参数进行了分类,并研究了它们对极限环数的影响。最后,我们发现在没有任何条件的情况下,扰动简并中心至少有两个极限环,并且分叉极限环的个数可以达到2m + 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extracta Mathematicae
Extracta Mathematicae Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信