EFFICIENT PREDICTIVE ESTIMATOR FOR FINITE POPULATION MEAN USING SUPPLEMENTARY VARIABLE UNDER POST STRATIFICATION

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
M. Shah, S. Rizvi, Manish Sharma, M. Jeelani
{"title":"EFFICIENT PREDICTIVE ESTIMATOR FOR FINITE POPULATION MEAN USING SUPPLEMENTARY VARIABLE UNDER POST STRATIFICATION","authors":"M. Shah, S. Rizvi, Manish Sharma, M. Jeelani","doi":"10.46939/j.sci.arts-23.2-a16","DOIUrl":null,"url":null,"abstract":"In the current investigation, we have developed the efficient predictive estimator for finite population mean using auxiliary variable in case of post stratification. Up to the first order of approximation, the expressions for bias and mean square error (MSE) are derived for the proposed estimator. This also reveals the constant’s ideal value, which reduces the MSE of the developed estimator. The developed estimator performs better than the existing estimators.Numerical study is also carried out by using the real data sets.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.2-a16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the current investigation, we have developed the efficient predictive estimator for finite population mean using auxiliary variable in case of post stratification. Up to the first order of approximation, the expressions for bias and mean square error (MSE) are derived for the proposed estimator. This also reveals the constant’s ideal value, which reduces the MSE of the developed estimator. The developed estimator performs better than the existing estimators.Numerical study is also carried out by using the real data sets.
后分层条件下基于补充变量的有限总体均值有效预测估计
在目前的研究中,我们开发了在分层后情况下使用辅助变量的有限总体均值的有效预测估计器。在一阶近似下,给出了该估计器的偏置和均方误差的表达式。这也揭示了常数的理想值,从而降低了所开发估计器的MSE。开发的估计器比现有的估计器性能更好。并利用实际数据集进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信