Pingli Chu, Lang Bao, Zheng Duan, Minggang Yu, Yanhui Zhu
{"title":"Late Cretaceous tectono-magmatism of southeast China: Evidence from Qushandao Granite in the eastern Zhejiang province","authors":"Pingli Chu, Lang Bao, Zheng Duan, Minggang Yu, Yanhui Zhu","doi":"10.1111/iar.12494","DOIUrl":null,"url":null,"abstract":"<p>The Qushandao Granite, mainly composed of alkali-feldspar granite, is situated in the eastern Zhejiang province of coastal southeast China. In this paper, we present whole-rock geochemistry, zircon U–Pb geochronology, and Hf isotopes to constrain the age, magma sources, and geodynamic setting of the Qushandao Granite. LA-ICP-MS zircon U–Pb dating results revealed that the Qushandao Granite was emplaced in the Late Cretaceous (101–98 Ma). Geochemically, the Qushandao Granite exhibits relatively high silica and alkali contents, metaluminous to weakly peraluminous (A/CNK = 0.98–1.02), and low abundances of phosphorus, titanium, magnesium, and calcium. It is also characterized by enrichment in Rb, K, Th, and depletion in Nb, Ta, P, Ti, and Sr with moderately to weakly negative europium anomalies (Eu/Eu* = 0.71–0.87). Furthermore, the Qushandao Granite displays lower FeO<sup>T</sup>/MgO, 10<sup>4</sup> × Ga/Al, and Zr + Nb + Ce + Y values relative to typical A-type granites. Therefore, we classify the Qushandao Granite as calc-alkaline I-type granite based on a synthesis of geological and geochemical characteristics. The Qushandao Granite shows variable zircon Hf isotopic compositions (<i>ε</i><sub>Hf</sub>(t) = −7.6 to +2.3) and <i>T</i><sub>DM2</sub> model ages of 1.40–0.83 Ga with a mean value of 1.17 Ga. We argue that the Qushandao Granite was most likely generated by mixing of mantle-derived mafic magma and crust-derived felsic magma in the lower crust, and that it was formed during post-collisional extension in the Late Cretaceous, related to the gradually increasing subduction angle of the Paleo-Pacific plate.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12494","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Qushandao Granite, mainly composed of alkali-feldspar granite, is situated in the eastern Zhejiang province of coastal southeast China. In this paper, we present whole-rock geochemistry, zircon U–Pb geochronology, and Hf isotopes to constrain the age, magma sources, and geodynamic setting of the Qushandao Granite. LA-ICP-MS zircon U–Pb dating results revealed that the Qushandao Granite was emplaced in the Late Cretaceous (101–98 Ma). Geochemically, the Qushandao Granite exhibits relatively high silica and alkali contents, metaluminous to weakly peraluminous (A/CNK = 0.98–1.02), and low abundances of phosphorus, titanium, magnesium, and calcium. It is also characterized by enrichment in Rb, K, Th, and depletion in Nb, Ta, P, Ti, and Sr with moderately to weakly negative europium anomalies (Eu/Eu* = 0.71–0.87). Furthermore, the Qushandao Granite displays lower FeOT/MgO, 104 × Ga/Al, and Zr + Nb + Ce + Y values relative to typical A-type granites. Therefore, we classify the Qushandao Granite as calc-alkaline I-type granite based on a synthesis of geological and geochemical characteristics. The Qushandao Granite shows variable zircon Hf isotopic compositions (εHf(t) = −7.6 to +2.3) and TDM2 model ages of 1.40–0.83 Ga with a mean value of 1.17 Ga. We argue that the Qushandao Granite was most likely generated by mixing of mantle-derived mafic magma and crust-derived felsic magma in the lower crust, and that it was formed during post-collisional extension in the Late Cretaceous, related to the gradually increasing subduction angle of the Paleo-Pacific plate.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.