{"title":"Oscillation theorems and asymptotic behaviour of certain third-order neutral differential equations with distributed deviating arguments","authors":"Yibing Sun, Yige Zhao","doi":"10.1504/IJDSDE.2021.10037987","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the oscillation criteria for a class of third-order neutral differential equations with distributed deviating arguments where and αi are ratios of positive odd integers, i = 1, 2. By using a generalized Riccati transformation and an integral averaging technique, we establish some new theorems, which ensure that all solutions of this equation oscillate or converge to zero. Some examples are given to illustrate our main results.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDSDE.2021.10037987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of this paper is to study the oscillation criteria for a class of third-order neutral differential equations with distributed deviating arguments where and αi are ratios of positive odd integers, i = 1, 2. By using a generalized Riccati transformation and an integral averaging technique, we establish some new theorems, which ensure that all solutions of this equation oscillate or converge to zero. Some examples are given to illustrate our main results.
期刊介绍:
IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.