Exact information ratios for secret sharing on small graphs with girth at least 5

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Károly Harsányi, P. Ligeti
{"title":"Exact information ratios for secret sharing on small graphs with girth at least 5","authors":"Károly Harsányi, P. Ligeti","doi":"10.1515/jmc-2018-0024","DOIUrl":null,"url":null,"abstract":"Abstract In a secret-sharing scheme, a piece of information – the secret – is distributed among a finite set of participants in such a way that only some predefined coalitions can recover it. The efficiency of the scheme is measured by the amount of information the most heavily loaded participant must remember. This amount is called information ratio, and one of the most interesting problems of this topic is to calculate the exact information ratio of given structures. In this paper, the information ratios of all but one graph-based schemes on 8 or 9 vertices with a girth at least 5 and all graph-based schemes on 10 vertices and 10 edges with a girth at least 5 are determined using two polyhedral combinatoric tools: the entropy method and covering with stars. Beyond the investigation of new graphs, the paper contains a few improvements and corrections of recent results on graphs with 9 vertices. Furthermore, we determine the exact information ratio of a large class of generalized sunlet graphs consisting of some pendant paths attached to a cycle of length at least 5.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2018-0024","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2018-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In a secret-sharing scheme, a piece of information – the secret – is distributed among a finite set of participants in such a way that only some predefined coalitions can recover it. The efficiency of the scheme is measured by the amount of information the most heavily loaded participant must remember. This amount is called information ratio, and one of the most interesting problems of this topic is to calculate the exact information ratio of given structures. In this paper, the information ratios of all but one graph-based schemes on 8 or 9 vertices with a girth at least 5 and all graph-based schemes on 10 vertices and 10 edges with a girth at least 5 are determined using two polyhedral combinatoric tools: the entropy method and covering with stars. Beyond the investigation of new graphs, the paper contains a few improvements and corrections of recent results on graphs with 9 vertices. Furthermore, we determine the exact information ratio of a large class of generalized sunlet graphs consisting of some pendant paths attached to a cycle of length at least 5.
在周长至少为5的小图上秘密共享的精确信息比率
摘要在秘密共享方案中,一条信息(即秘密)被分配到有限的参与者中,只有一些预先定义好的联盟可以恢复它。该方案的效率是通过负荷最大的参与者必须记住的信息量来衡量的。这个量被称为信息比,而本课题最有趣的问题之一就是计算给定结构的准确信息比。本文利用熵法和星形覆盖两种多面体组合工具,确定了8个或9个顶点且周长至少为5的图的所有方案,以及10个顶点和10条边且周长至少为5的图的所有方案的信息比。除了对新图的研究之外,本文还对最近关于9顶点图的研究结果进行了一些改进和修正。此外,我们还确定了一大类广义太阳图的确切信息比,这些图是由长度至少为5的循环上的一些悬挂路径组成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信