A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions

IF 1.1 Q2 MATHEMATICS, APPLIED
Sepideh Niknam, H. Adibi
{"title":"A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions","authors":"Sepideh Niknam, H. Adibi","doi":"10.22034/CMDE.2021.42440.1829","DOIUrl":null,"url":null,"abstract":"In this research, linear combination of moving least square (MLS) and local radial basis functions(LRBFs)is considered within the framework of meshless method to solve two-dimensional hyperbolic telegraph equation.Besides, differential quadrature method (DQM) is employed to discretize temporal derivatives. Furthermore, a control parameter is introduced and optimized to achieve minimum errors via an experimental approach.Illustrative examples are provided to demonstrate applicability and efficiency of the method. The results prove the superiority of this method overusing MLS and LRBF individually.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.42440.1829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, linear combination of moving least square (MLS) and local radial basis functions(LRBFs)is considered within the framework of meshless method to solve two-dimensional hyperbolic telegraph equation.Besides, differential quadrature method (DQM) is employed to discretize temporal derivatives. Furthermore, a control parameter is introduced and optimized to achieve minimum errors via an experimental approach.Illustrative examples are provided to demonstrate applicability and efficiency of the method. The results prove the superiority of this method overusing MLS and LRBF individually.
基于移动最小二乘无网格法和径向基函数的二维双曲电报方程的数值解
在无网格方法的框架下,考虑了移动最小二乘(MLS)和局部径向基函数(LRBFs)的线性组合来求解二维双曲电报方程。此外,采用微分求积法对时间导数进行离散化。此外,通过实验方法引入并优化了控制参数,以实现最小误差。举例说明了该方法的适用性和有效性。结果证明了该方法优于单独使用MLS和LRBF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信