{"title":"A formal justification of the Ancient Chinese Method of Computing Square Roots","authors":"Edilberto Nájera, Leslie Cristina Najera-Benitez","doi":"10.54870/1551-3440.1513","DOIUrl":null,"url":null,"abstract":": In this paper a formal justification of the ancient Chinese method for computing square roots is given. As a result, some already known properties of the square root which is computed with this method are deduced. If any other number base is used, the justification given shows that the method is applied in the same way and that the deduced properties are still being fulfilled, facts that highlight the importance of positional number systems. It also shows how to generalize the method to compute high orders roots. Although with this elementary method you can compute the square root of any real number, with the exact number of decimal places that you want, the mathematicians of ancient China were not able to generalize it for the purpose of computing irrational roots, because they did not know a positional number system. Finally, in order for high school students gain a better understanding of number systems, the examples given in this paper show how they can use the square root calculus with this method to practice elementary operations with positional number systems with different bases, and also to explore some relationships between them.","PeriodicalId":44703,"journal":{"name":"Mathematics Enthusiast","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Enthusiast","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54870/1551-3440.1513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
: In this paper a formal justification of the ancient Chinese method for computing square roots is given. As a result, some already known properties of the square root which is computed with this method are deduced. If any other number base is used, the justification given shows that the method is applied in the same way and that the deduced properties are still being fulfilled, facts that highlight the importance of positional number systems. It also shows how to generalize the method to compute high orders roots. Although with this elementary method you can compute the square root of any real number, with the exact number of decimal places that you want, the mathematicians of ancient China were not able to generalize it for the purpose of computing irrational roots, because they did not know a positional number system. Finally, in order for high school students gain a better understanding of number systems, the examples given in this paper show how they can use the square root calculus with this method to practice elementary operations with positional number systems with different bases, and also to explore some relationships between them.
期刊介绍:
The Mathematics Enthusiast (TME) is an eclectic internationally circulated peer reviewed journal which focuses on mathematics content, mathematics education research, innovation, interdisciplinary issues and pedagogy. The journal exists as an independent entity. The electronic version is hosted by the Department of Mathematical Sciences- University of Montana. The journal is NOT affiliated to nor subsidized by any professional organizations but supports PMENA [Psychology of Mathematics Education- North America] through special issues on various research topics. TME strives to promote equity internationally by adopting an open access policy, as well as allowing authors to retain full copyright of their scholarship contingent on the journals’ publication ethics guidelines. Authors do not need to be affiliated with the University of Montana in order to publish in this journal. Journal articles cover a wide spectrum of topics such as mathematics content (including advanced mathematics), educational studies related to mathematics, and reports of innovative pedagogical practices with the hope of stimulating dialogue between pre-service and practicing teachers, university educators and mathematicians. The journal is interested in research based articles as well as historical, philosophical, political, cross-cultural and systems perspectives on mathematics content, its teaching and learning. The journal also includes a monograph series on special topics of interest to the community of readers.