Jurassic–Cretaceous radiolarian-bearing strata from the Gresten Klippen Zone and the St. Veit Klippen Zone (Wienerwald, Eastern Alps, Austria): Implications for stratigraphy and paleogeography
A. Ślączka, M. Bąk, C. Pfersmann, V. Koukal, M. Wagreich, Szymon Kowalik, M. Maslo
{"title":"Jurassic–Cretaceous radiolarian-bearing strata from the Gresten Klippen Zone and the St. Veit Klippen Zone (Wienerwald, Eastern Alps, Austria): Implications for stratigraphy and paleogeography","authors":"A. Ślączka, M. Bąk, C. Pfersmann, V. Koukal, M. Wagreich, Szymon Kowalik, M. Maslo","doi":"10.17738/ajes.2018.0013","DOIUrl":null,"url":null,"abstract":"Abstract Two sections of the klippen zones in the Wienerwald area have been investigated for their stratigraphy: (1) The Gern section of the Main Klippen Zone, a part of the Gresten Klippen Zone, and (2) the St. Veit Klippen Zone in the Lainz Tunnel and the neighboring outcrops in western Vienna. New biostratigraphic data are based on radiolaria from siliceous intervals and a few findings of calcareous nannofossils from marlstones. In the Gresten Klippen Zone, radiolarian assemblages from limestones of the Gern locality indicate a middle Oxfordian to early Kimmeridgian age of the Scheibbsbach Formation. Radiolarian and nannofossil data from the St. Veit Klippen Zone in the Lainz railway tunnel locality, as well as correlated outcrops from the Lainzer Tiergarten and the Gemeindeberg in the southwest of Vienna, indicate the presence of mainly Bajocian to lower Oxfordian red radiolarites and cherts (Rotenberg Formation). Siliceous, grey limestones and cherts of the Fasselgraben Formation range from the upper Oxfordian–Kimmeridgian to the Valanginian–Barremian. The Main Klippen Zone was derived from the European margin to the north, and this zone is regarded as a Helvetic paleogeographic unit. The St. Veit Klippen Zone in the Lainz Tunnel section contains no ophiolitic material and shows a tectonic contact with the surrounding Rhenodanubian nappe system, which indicates no primary sedimentary contact of the St. Veit Klippen Zone with the Flysch units, as well as demonstrating the presence of two structurally separated Alpine tectonic units. Thus, a direct correlation with the Ybbsitz Zone is not supported, and an original paleogeographic position in the transition from the Penninic Ocean to the Austroalpine continental fragment is proposed.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"111 1","pages":"204 - 222"},"PeriodicalIF":1.7000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2018.0013","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Two sections of the klippen zones in the Wienerwald area have been investigated for their stratigraphy: (1) The Gern section of the Main Klippen Zone, a part of the Gresten Klippen Zone, and (2) the St. Veit Klippen Zone in the Lainz Tunnel and the neighboring outcrops in western Vienna. New biostratigraphic data are based on radiolaria from siliceous intervals and a few findings of calcareous nannofossils from marlstones. In the Gresten Klippen Zone, radiolarian assemblages from limestones of the Gern locality indicate a middle Oxfordian to early Kimmeridgian age of the Scheibbsbach Formation. Radiolarian and nannofossil data from the St. Veit Klippen Zone in the Lainz railway tunnel locality, as well as correlated outcrops from the Lainzer Tiergarten and the Gemeindeberg in the southwest of Vienna, indicate the presence of mainly Bajocian to lower Oxfordian red radiolarites and cherts (Rotenberg Formation). Siliceous, grey limestones and cherts of the Fasselgraben Formation range from the upper Oxfordian–Kimmeridgian to the Valanginian–Barremian. The Main Klippen Zone was derived from the European margin to the north, and this zone is regarded as a Helvetic paleogeographic unit. The St. Veit Klippen Zone in the Lainz Tunnel section contains no ophiolitic material and shows a tectonic contact with the surrounding Rhenodanubian nappe system, which indicates no primary sedimentary contact of the St. Veit Klippen Zone with the Flysch units, as well as demonstrating the presence of two structurally separated Alpine tectonic units. Thus, a direct correlation with the Ybbsitz Zone is not supported, and an original paleogeographic position in the transition from the Penninic Ocean to the Austroalpine continental fragment is proposed.
期刊介绍:
AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science.
AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.