{"title":"Effect of processing conditions on the cellular morphology of polyethylene hollow fiber foams for membrane applications","authors":"Z. Razzaz, A. Mohebbi, D. Rodrigue","doi":"10.1177/0262489318795967","DOIUrl":null,"url":null,"abstract":"A continuous method without any solvent is proposed to produce porous hollow fibers for membrane (HFM) applications. In this case, linear low-density polyethylene was combined with azodicarbonamide to produce samples via extrusion. In particular, the processing (chemical blowing agent content and temperature profile) and post-processing (stretching velocity) conditions were optimized to obtain a cellular structure having a high cell density and uniform cell size distribution. From the samples obtained, a complete set of characterization was performed (morphological, mechanical, physical, and gas transport). The results show that HFM having a higher cell density can increase gas permeability, especially for hydrogen. Overall, it is shown that low-cost polyolefins having a suitable cellular structure can be used for gas separation membranes.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"37 1","pages":"169 - 188"},"PeriodicalIF":1.3000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489318795967","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489318795967","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
Abstract
A continuous method without any solvent is proposed to produce porous hollow fibers for membrane (HFM) applications. In this case, linear low-density polyethylene was combined with azodicarbonamide to produce samples via extrusion. In particular, the processing (chemical blowing agent content and temperature profile) and post-processing (stretching velocity) conditions were optimized to obtain a cellular structure having a high cell density and uniform cell size distribution. From the samples obtained, a complete set of characterization was performed (morphological, mechanical, physical, and gas transport). The results show that HFM having a higher cell density can increase gas permeability, especially for hydrogen. Overall, it is shown that low-cost polyolefins having a suitable cellular structure can be used for gas separation membranes.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.