Five Objective Optimization Using Naïve & Sorting Genetic Algorithm (NSGA) for Green Microalgae Culture Conditions for Biodiesel Production

Q3 Chemical Engineering
J. Eswari, M. K. Tripathi, S. Dhagat, S. K. Karn
{"title":"Five Objective Optimization Using Naïve & Sorting Genetic Algorithm (NSGA) for Green Microalgae Culture Conditions for Biodiesel Production","authors":"J. Eswari, M. K. Tripathi, S. Dhagat, S. K. Karn","doi":"10.2174/2405520412666190124163629","DOIUrl":null,"url":null,"abstract":"\n\nRenewable sources of energy like biodiesel are substitute energy fuel\nwhich are made from renewable bio sources or biomasses. Due to many advantages of using algae\n(Chlorella sp), we performed design of experiments in terms of functional and biochemical\nfactors such as biomass, chlorophyll content, protein moiety and carbohydrate and lipid contents.\n\n\n\nOur objective is maximization of lipid accumulation (y1) and chlorophyll content\n(y2) and minimization of carbohydrate consumption (y3), protein (y4) and biomass (y5) contents.\nBy using the experimental data, the regression model has been developed in order to obtain\nthe desired response (biomass, chlorophyll, protein, carbohydrate and lipid) therefore it is\nnecessary to optimize input conditions. The pre-optimization stage is an important part and useful\nfor the production of biodiesel as biomass which is renewable energy to improve the quality.\n\n\n\nThe corresponding input and output conditions with multi-objective optimisation\nusing naïve & sorting genetic algorithm (NSGA) is X1=0.99, X2=0.001, X3=-1.111,\nX4=0.01 and Lipid= 42.34, Chlorophyll=1.1212 (µgmL-1), Carbohydrate= 24.54%, Protein=\n0.0742 (mgmL-1), Biomass=0.999 (gL-1).\n\n\n\nThe multi-objective optimization NSGA prediction is compared with the\nresponse surface model combined with a genetic algorithm (RSM-GA) and we observed better\nproductivity with NSGA.\n","PeriodicalId":38021,"journal":{"name":"Recent Innovations in Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Innovations in Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2405520412666190124163629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Renewable sources of energy like biodiesel are substitute energy fuel which are made from renewable bio sources or biomasses. Due to many advantages of using algae (Chlorella sp), we performed design of experiments in terms of functional and biochemical factors such as biomass, chlorophyll content, protein moiety and carbohydrate and lipid contents. Our objective is maximization of lipid accumulation (y1) and chlorophyll content (y2) and minimization of carbohydrate consumption (y3), protein (y4) and biomass (y5) contents. By using the experimental data, the regression model has been developed in order to obtain the desired response (biomass, chlorophyll, protein, carbohydrate and lipid) therefore it is necessary to optimize input conditions. The pre-optimization stage is an important part and useful for the production of biodiesel as biomass which is renewable energy to improve the quality. The corresponding input and output conditions with multi-objective optimisation using naïve & sorting genetic algorithm (NSGA) is X1=0.99, X2=0.001, X3=-1.111, X4=0.01 and Lipid= 42.34, Chlorophyll=1.1212 (µgmL-1), Carbohydrate= 24.54%, Protein= 0.0742 (mgmL-1), Biomass=0.999 (gL-1). The multi-objective optimization NSGA prediction is compared with the response surface model combined with a genetic algorithm (RSM-GA) and we observed better productivity with NSGA.
基于Naïve &排序遗传算法(NSGA)的生物柴油绿色微藻培养条件五目标优化
生物柴油等可再生能源是由可再生生物资源或生物质制成的替代能源。由于使用藻类(小球藻)的许多优点,我们从生物量、叶绿素含量、蛋白质部分以及碳水化合物和脂质含量等功能和生化因素方面进行了实验设计。我们的目标是使脂质积累(y1)和叶绿素含量(y2)最大化,并使碳水化合物消耗(y3)、蛋白质(y4)和生物量(y5)含量最小化。利用实验数据,建立了回归模型,以获得所需的响应(生物量、叶绿素、蛋白质、碳水化合物和脂质),因此有必要优化输入条件。预优化阶段是生物柴油作为可再生能源生产生物柴油以提高质量的重要环节。采用朴素排序遗传算法(NSGA)进行多目标优化的相应输入和输出条件为:X1=0.99,X2=0.001,X3=-1.111,X4=0.01和脂质=42.34,叶绿素=1.1122(µgmL-1),碳水化合物=25.44%,蛋白质=0.0742(mgmL-1),生物量=0.999(gL-1)。将多目标优化NSGA预测与结合遗传算法的响应面模型(RSM-GA)进行比较,发现NSGA具有更好的生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recent Innovations in Chemical Engineering
Recent Innovations in Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
2.10
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信