Relative plus constructions

IF 0.8 4区 数学 Q2 MATHEMATICS
Guille Carrión Santiago , Jérôme Scherer
{"title":"Relative plus constructions","authors":"Guille Carrión Santiago ,&nbsp;Jérôme Scherer","doi":"10.1016/j.exmath.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>h</mi></math></span> be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></math></span>, consisting of a connected space <span><math><mi>X</mi></math></span> and an <span><math><mi>h</mi></math></span>-perfect normal subgroup <span><math><mi>H</mi></math></span> of the fundamental group <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, an <span><math><mi>h</mi></math></span>-acyclic map <span><math><mrow><mi>X</mi><mo>→</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>+</mo><mi>h</mi></mrow></msubsup></mrow></math></span> inducing the quotient by <span><math><mi>H</mi></math></span> on the fundamental group. We show that this map is terminal among the <span><math><mi>h</mi></math></span>-acyclic maps that kill a subgroup of <span><math><mi>H</mi></math></span>. When <span><math><mi>h</mi></math></span> is an ordinary homology theory with coefficients in a commutative ring with unit <span><math><mi>R</mi></math></span>, this provides a functorial and well-defined counterpart to a construction by cell attachment introduced by Broto, Levi, and Oliver in the spirit of Quillen’s plus construction. We also clarify the necessity to use a strongly <span><math><mi>R</mi></math></span>-perfect group <span><math><mi>H</mi></math></span> in characteristic zero.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an h-perfect normal subgroup H of the fundamental group π1(X), an h-acyclic map XXH+h inducing the quotient by H on the fundamental group. We show that this map is terminal among the h-acyclic maps that kill a subgroup of H. When h is an ordinary homology theory with coefficients in a commutative ring with unit R, this provides a functorial and well-defined counterpart to a construction by cell attachment introduced by Broto, Levi, and Oliver in the spirit of Quillen’s plus construction. We also clarify the necessity to use a strongly R-perfect group H in characteristic zero.

关系加号结构
设h是一个连接同源理论。在空间映射范畴中,我们构造了一个作为Bousfield局部化函子的函子相对加构造。它允许我们关联到一对(X,H),由连通空间X和基本群π1(X)的H-完全正规子群H组成,H-非循环映射X→XH+h在基群上由h导出商。我们证明了这个映射在杀死h的子群的h-非循环映射中是终端的。当h是一个在单位为R的交换环中具有系数的普通同调理论时,这为Broto、Levi和Oliver根据Quillen加构造的精神引入的单元连接构造提供了一个函数和定义明确的对应物。我们还阐明了在特征零中使用强R-完全群H的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信