{"title":"Relative plus constructions","authors":"Guille Carrión Santiago , Jérôme Scherer","doi":"10.1016/j.exmath.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>h</mi></math></span> be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></math></span>, consisting of a connected space <span><math><mi>X</mi></math></span> and an <span><math><mi>h</mi></math></span>-perfect normal subgroup <span><math><mi>H</mi></math></span> of the fundamental group <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, an <span><math><mi>h</mi></math></span>-acyclic map <span><math><mrow><mi>X</mi><mo>→</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>+</mo><mi>h</mi></mrow></msubsup></mrow></math></span> inducing the quotient by <span><math><mi>H</mi></math></span> on the fundamental group. We show that this map is terminal among the <span><math><mi>h</mi></math></span>-acyclic maps that kill a subgroup of <span><math><mi>H</mi></math></span>. When <span><math><mi>h</mi></math></span> is an ordinary homology theory with coefficients in a commutative ring with unit <span><math><mi>R</mi></math></span>, this provides a functorial and well-defined counterpart to a construction by cell attachment introduced by Broto, Levi, and Oliver in the spirit of Quillen’s plus construction. We also clarify the necessity to use a strongly <span><math><mi>R</mi></math></span>-perfect group <span><math><mi>H</mi></math></span> in characteristic zero.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair , consisting of a connected space and an -perfect normal subgroup of the fundamental group , an -acyclic map inducing the quotient by on the fundamental group. We show that this map is terminal among the -acyclic maps that kill a subgroup of . When is an ordinary homology theory with coefficients in a commutative ring with unit , this provides a functorial and well-defined counterpart to a construction by cell attachment introduced by Broto, Levi, and Oliver in the spirit of Quillen’s plus construction. We also clarify the necessity to use a strongly -perfect group in characteristic zero.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.