{"title":"An equilibrated a posteriori error estimator for an Interior Penalty Discontinuous Galerkin approximation of the p-Laplace problem","authors":"R. Hoppe, Youri Iliash","doi":"10.1515/rnam-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2021-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.