ON SOME PATTERNS OF TNAF FOR SCALAR MULTIPLICATION OVER KOBLITZ CURVE

Q3 Multidisciplinary
F. Yunos, Rosimah Rosli, Norliana Muslim
{"title":"ON SOME PATTERNS OF TNAF FOR SCALAR MULTIPLICATION OVER KOBLITZ CURVE","authors":"F. Yunos, Rosimah Rosli, Norliana Muslim","doi":"10.22452/mjs.sp2022no1.2","DOIUrl":null,"url":null,"abstract":"A τ-adic non-adjacent form (TNAF) of an element α of the ring Z(τ) is an expansion whereby the digits are generated by iteratively dividing α by τ, allowing the remainders of -1,0 or 1. The application of TNAF as a multiplier of scalar multiplication (SM) on the Koblitz curve plays a key role in Elliptical Curve Cryptography (ECC). There are several patterns of TNAF (α) expansion in the form of [c0,0,…,0,cl-1 ], [c0,0,…,c(l-1)/2,…,0,c(l-1)], 2+2k, 3+4k, 5+4k and 8k1+8k2 that have been produced in prior work in the literature. However, the construction of their properties based upon pyramid number formulas such as Nichomacus’s theorem and Faulhaber’s formula remains to be rather complex. In this work, we derive such types of TNAF in a more concise manner by applying the power of Frobenius map (τm) based on v-simplex and arithmetic sequences.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.sp2022no1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

A τ-adic non-adjacent form (TNAF) of an element α of the ring Z(τ) is an expansion whereby the digits are generated by iteratively dividing α by τ, allowing the remainders of -1,0 or 1. The application of TNAF as a multiplier of scalar multiplication (SM) on the Koblitz curve plays a key role in Elliptical Curve Cryptography (ECC). There are several patterns of TNAF (α) expansion in the form of [c0,0,…,0,cl-1 ], [c0,0,…,c(l-1)/2,…,0,c(l-1)], 2+2k, 3+4k, 5+4k and 8k1+8k2 that have been produced in prior work in the literature. However, the construction of their properties based upon pyramid number formulas such as Nichomacus’s theorem and Faulhaber’s formula remains to be rather complex. In this work, we derive such types of TNAF in a more concise manner by applying the power of Frobenius map (τm) based on v-simplex and arithmetic sequences.
koblitz曲线上标量乘法的几种tnaf格式
环Z(τ)的元素α的τ-偶非相邻形式(TNAF)是一种扩展,通过迭代将α除以τ来生成数字,允许余数为-1,0或1。TNAF作为Koblitz曲线上标量乘法(SM)的乘法器的应用在椭圆曲线密码学(ECC)中起着关键作用。有几种TNAF(α)膨胀模式,其形式为[c0,0,…,0,cl-1],[c0,0…,c(l-1)/2,…,O,c(l-1)],2+2k,3+4k,5+4k和8k1+8k2。然而,基于金字塔数公式(如Nichmacus定理和Faulhaber公式)构造它们的性质仍然相当复杂。在这项工作中,我们通过应用基于v-单纯形和算术序列的Frobenius映射(τm)的幂,以更简洁的方式导出了这类类型的TNAF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaysian journal of science
Malaysian journal of science Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信