Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-11-10 DOI:10.3390/stats5040066
Sudaraka Tholkage, Qi Zheng, K. B. Kulasekera
{"title":"Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data","authors":"Sudaraka Tholkage, Qi Zheng, K. B. Kulasekera","doi":"10.3390/stats5040066","DOIUrl":null,"url":null,"abstract":"Due to the wide availability of functional data from multiple disciplines, the studies of functional data analysis have become popular in the recent literature. However, the related development in censored survival data has been relatively sparse. In this work, we consider the problem of analyzing time-to-event data in the presence of functional predictors. We develop a conditional generalized Kaplan–Meier (KM) estimator that incorporates functional predictors using kernel weights and rigorously establishes its asymptotic properties. In addition, we propose to select the optimal bandwidth based on a time-dependent Brier score. We then carry out extensive numerical studies to examine the finite sample performance of the proposed functional KM estimator and bandwidth selector. We also illustrated the practical usage of our proposed method by using a data set from Alzheimer’s Disease Neuroimaging Initiative data.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the wide availability of functional data from multiple disciplines, the studies of functional data analysis have become popular in the recent literature. However, the related development in censored survival data has been relatively sparse. In this work, we consider the problem of analyzing time-to-event data in the presence of functional predictors. We develop a conditional generalized Kaplan–Meier (KM) estimator that incorporates functional predictors using kernel weights and rigorously establishes its asymptotic properties. In addition, we propose to select the optimal bandwidth based on a time-dependent Brier score. We then carry out extensive numerical studies to examine the finite sample performance of the proposed functional KM estimator and bandwidth selector. We also illustrated the practical usage of our proposed method by using a data set from Alzheimer’s Disease Neuroimaging Initiative data.
时间到事件数据的函数协变量条件Kaplan-Meier估计
由于来自多个学科的功能数据的广泛可用性,功能数据分析的研究在最近的文献中变得流行起来。然而,审查生存数据的相关发展相对较少。在这项工作中,我们考虑了在存在功能预测因子的情况下分析事件时间数据的问题。我们开发了一个条件广义Kaplan–Meier(KM)估计量,该估计量结合了使用核权重的函数预测因子,并严格建立了其渐近性质。此外,我们建议基于时间相关的Brier分数来选择最佳带宽。然后,我们进行了广泛的数值研究,以检验所提出的函数KM估计器和带宽选择器的有限样本性能。我们还通过使用阿尔茨海默病神经成像倡议数据的数据集,说明了我们提出的方法的实际用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信