Chaos in historical prices and volatilities with five-dimensional euclidean spaces

Q1 Mathematics
P.R.L. Alves
{"title":"Chaos in historical prices and volatilities with five-dimensional euclidean spaces","authors":"P.R.L. Alves","doi":"10.1016/j.csfx.2019.100002","DOIUrl":null,"url":null,"abstract":"<div><p>From the Diagram Accuracy-Deviation and the new quantifier of chaos, this paper presents time series analysis for historical prices, volatilities and returns. The study cases are financial price series of United States Brent Oil (BNO), Wipro Limited (WIT), Nasdaq, Inc. (NDAQ) and SPDR S&amp;P 500 ETF (SPY). Detection of chaos and randomness cover the period from November 2010 to November 2018. This work introduces the chaoticity in the Lorenz’s sense, a new measure for comparison between time series. The set of results enlights the underlying dynamics of the time evolution observed in economic indexes nowadays.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100002","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054419300016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

From the Diagram Accuracy-Deviation and the new quantifier of chaos, this paper presents time series analysis for historical prices, volatilities and returns. The study cases are financial price series of United States Brent Oil (BNO), Wipro Limited (WIT), Nasdaq, Inc. (NDAQ) and SPDR S&P 500 ETF (SPY). Detection of chaos and randomness cover the period from November 2010 to November 2018. This work introduces the chaoticity in the Lorenz’s sense, a new measure for comparison between time series. The set of results enlights the underlying dynamics of the time evolution observed in economic indexes nowadays.

五维欧几里得空间中历史价格和波动的混沌
本文从准确度偏差图和混沌的新量词出发,对历史价格、波动率和收益进行了时间序列分析。研究案例为美国布伦特原油(BNO)、Wipro Limited (WIT)、纳斯达克(NDAQ)和SPDR s&p 500 ETF (SPY)的金融价格序列。混沌和随机性检测的时间段为2010年11月至2018年11月。本文引入了洛伦兹意义上的混沌性,这是一种新的时间序列间比较度量。这组结果揭示了当今经济指标时间演化的潜在动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信