Note on the Kato property of sectorial forms

IF 0.7 4区 数学 Q2 MATHEMATICS
R. Chill, Sebastian Król
{"title":"Note on the Kato property of sectorial forms","authors":"R. Chill, Sebastian Król","doi":"10.7900/jot.2021jan21.2309","DOIUrl":null,"url":null,"abstract":"We characterise the Kato property of a sectorial form a, defined on a Hilbert space V, with respect to a larger Hilbert space H in terms of two bounded, selfadjoint operators T and Q determined by the imaginary part of a and the embedding of V into H, respectively. As a consequence, we show that if a bounded selfadjoint operator T on a Hilbert space V is in the Schatten class Sp(V) (p⩾1), then the associated form aT(⋅,⋅):=⟨(I+iT)⋅,⋅⟩V has the Kato property with respect to every Hilbert space H into which V is densely and continuously embedded. This result is in a sense sharp. Another result says that if T and Q commute then the form a with respect to H possesses the Kato property.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2021jan21.2309","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterise the Kato property of a sectorial form a, defined on a Hilbert space V, with respect to a larger Hilbert space H in terms of two bounded, selfadjoint operators T and Q determined by the imaginary part of a and the embedding of V into H, respectively. As a consequence, we show that if a bounded selfadjoint operator T on a Hilbert space V is in the Schatten class Sp(V) (p⩾1), then the associated form aT(⋅,⋅):=⟨(I+iT)⋅,⋅⟩V has the Kato property with respect to every Hilbert space H into which V is densely and continuously embedded. This result is in a sense sharp. Another result says that if T and Q commute then the form a with respect to H possesses the Kato property.
关于扇区形式的Kato性质的注记
我们用两个有界的、自伴随算子T和Q分别由a的虚部和V嵌入H决定的,来刻画在希尔伯特空间V上关于更大的希尔伯特空间H的扇形a的加藤性质。因此,我们表明,如果希尔伯特空间V上的有界自伴随算子T在Schatten类Sp(V) (p小于1)中,那么相关的形式aT(⋅,⋅):=⟨(I+iT)⋅,⋅⟩V对于V密集连续嵌入的每个希尔伯特空间H具有加藤性质。这个结果在某种意义上是尖锐的。另一个结果是,如果T和Q可交换,那么形式a关于H具有加藤性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信