{"title":"ANESTHETIC AND PHYSIOLOGICAL EFFECT OF CLOVE OIL AND LIDOCAINE-HCL ON THE GRASS PUFFER, Takifugu niphobles","authors":"T. Lee, H. Gil, I. Park","doi":"10.4217/OPR.2017.39.1.001","DOIUrl":null,"url":null,"abstract":"The aim of this study was to determine the physiological response and the applicable concentration ranges of anesthetic clove oil and anesthetic lidocaine-HCl, and to investigate the synergistic effect of a mixture of these two anesthetics on the in grass puffer (Takifugu niphobles). The anesthesia times decreased and the recovery times increased with increasing concentrations of clove oil and lidocaine-HCl. Applicable concentration ranges for long-term transportation requiring more than 1 hour were 2 ppm for clove oil and 50 ppm for lidocaine-HCl. With mixtures of the two anesthetics, the anesthesia time decreased as the admixture concentration of clove oil and lidocaine-HCl increased. Anesthesia times of experimental groups with the combined anesthetics were shorter than those with the same concentrations of clove oil or lidocaine-HCl alone. Plasma cortisol concentrations were highest at 6 hours in all experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while all groups with clove oil or lidocaine-HCl alone had the highest plasma cortisol concentrations at 12 hours. Plasma glucose concentrations were highest at 12 hours in experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while groups with clove oil or lidocaine-HCl alone had the highest plasma glucose at 24 hours. The results of this study provide basic information about anesthetics and the synergistic effect of mixtures of anesthetics in this fish species. This information should be useful for aquaculturists who require methods for safe and easy fish handling, and for transporters who require that minimal stress is imposed on fish during transport.","PeriodicalId":35665,"journal":{"name":"Ocean and Polar Research","volume":"39 1","pages":"372-372"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4217/OPR.2017.39.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
The aim of this study was to determine the physiological response and the applicable concentration ranges of anesthetic clove oil and anesthetic lidocaine-HCl, and to investigate the synergistic effect of a mixture of these two anesthetics on the in grass puffer (Takifugu niphobles). The anesthesia times decreased and the recovery times increased with increasing concentrations of clove oil and lidocaine-HCl. Applicable concentration ranges for long-term transportation requiring more than 1 hour were 2 ppm for clove oil and 50 ppm for lidocaine-HCl. With mixtures of the two anesthetics, the anesthesia time decreased as the admixture concentration of clove oil and lidocaine-HCl increased. Anesthesia times of experimental groups with the combined anesthetics were shorter than those with the same concentrations of clove oil or lidocaine-HCl alone. Plasma cortisol concentrations were highest at 6 hours in all experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while all groups with clove oil or lidocaine-HCl alone had the highest plasma cortisol concentrations at 12 hours. Plasma glucose concentrations were highest at 12 hours in experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while groups with clove oil or lidocaine-HCl alone had the highest plasma glucose at 24 hours. The results of this study provide basic information about anesthetics and the synergistic effect of mixtures of anesthetics in this fish species. This information should be useful for aquaculturists who require methods for safe and easy fish handling, and for transporters who require that minimal stress is imposed on fish during transport.