Accelerated failure time models with log-concave errors

IF 2.9 4区 经济学 Q1 ECONOMICS
Ruixuan Liu, Zhengfei Yu
{"title":"Accelerated failure time models with log-concave errors","authors":"Ruixuan Liu, Zhengfei Yu","doi":"10.1093/ectj/utz024","DOIUrl":null,"url":null,"abstract":"We study accelerated failure time (AFT) models in which the survivor function of the additive error term is log-concave. The log-concavity assumption covers large families of commonly-used distributions and also represents the aging or wear-out phenomenon of the baseline duration. For right-censored failure time data, we construct semi-parametric maximum likelihood estimates of the finite dimensional parameter and establish the large sample properties. The shape restriction is incorporated via a nonparametric maximum likelihood estimator (NPMLE) of the hazard function. Our approach guarantees the uniqueness of a global solution for the estimating equations and delivers semiparametric efficient estimates. Simulation studies and empirical applications demonstrate the usefulness of our method.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"23 1","pages":"251-268"},"PeriodicalIF":2.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utz024","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utz024","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

We study accelerated failure time (AFT) models in which the survivor function of the additive error term is log-concave. The log-concavity assumption covers large families of commonly-used distributions and also represents the aging or wear-out phenomenon of the baseline duration. For right-censored failure time data, we construct semi-parametric maximum likelihood estimates of the finite dimensional parameter and establish the large sample properties. The shape restriction is incorporated via a nonparametric maximum likelihood estimator (NPMLE) of the hazard function. Our approach guarantees the uniqueness of a global solution for the estimating equations and delivers semiparametric efficient estimates. Simulation studies and empirical applications demonstrate the usefulness of our method.
具有对数凹误差的加速失效时间模型
我们研究了加速失效时间(AFT)模型,其中加性误差项的幸存函数是对数凹的。对数凹度假设涵盖了常用分布的大家族,也代表了基线持续时间的老化或磨损现象。对于右删失失效时间数据,我们构造了有限维参数的半参数最大似然估计,并建立了大样本性质。形状限制是通过危险函数的非参数最大似然估计量(NPMLE)合并的。我们的方法保证了估计方程全局解的唯一性,并提供了半参数有效估计。仿真研究和实证应用证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信