Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering

Qomariyah, M. U. Siregar
{"title":"Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering","authors":"Qomariyah, M. U. Siregar","doi":"10.14421/jiska.2022.7.2.91-99","DOIUrl":null,"url":null,"abstract":"Universities as educational institutions have very large amounts of academic data which may not be used properly. The data needs to be analyzed to produce information that can map the distribution of students. Student academic data processing utilizes data mining processes using clustering techniques, K-Means and K-Medoids. This study aims to implement and analyze the comparison of which algorithm is more optimal based on the cluster validation test with the Davies Bouldin Index. The data used are academic data of UIN Sunan Kalijaga students in the 2013-2015 batch. In the k-Means process, the best number of clusters is 5 with a DBI value of 0.781. In the k-Medoids process, the best number of clusters is 3 with a DBI value of 0.929. Based on the value of the DBI validation test, the k-Means algorithm is more optimal than the k-Medoids. So that the cluster of students with the highest average GPA of 3,325 is 401 students.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2022.7.2.91-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Universities as educational institutions have very large amounts of academic data which may not be used properly. The data needs to be analyzed to produce information that can map the distribution of students. Student academic data processing utilizes data mining processes using clustering techniques, K-Means and K-Medoids. This study aims to implement and analyze the comparison of which algorithm is more optimal based on the cluster validation test with the Davies Bouldin Index. The data used are academic data of UIN Sunan Kalijaga students in the 2013-2015 batch. In the k-Means process, the best number of clusters is 5 with a DBI value of 0.781. In the k-Medoids process, the best number of clusters is 3 with a DBI value of 0.929. Based on the value of the DBI validation test, the k-Means algorithm is more optimal than the k-Medoids. So that the cluster of students with the highest average GPA of 3,325 is 401 students.
学生数据聚类中K-Means聚类算法与K-Medoids聚类的比较研究
大学作为教育机构,拥有大量的学术数据,这些数据可能没有得到正确的使用。需要对这些数据进行分析,以产生可以映射学生分布的信息。学生学术数据处理利用数据挖掘过程使用聚类技术,K-Means和K-Medoids。本研究旨在实现并分析基于聚类验证测试的算法与Davies Bouldin指数哪种算法更优的比较。使用的数据为2013-2015年unin Sunan Kalijaga学生的学业数据。在k-Means过程中,最佳聚类数为5个,DBI值为0.781。在k- mediids过程中,集群的最佳数量为3个,DBI值为0.929。从DBI验证测试的结果来看,k-Means算法比k-Medoids算法更优。所以平均绩点最高的学生群是401人,平均绩点是3325。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信