{"title":"Global well-posedness and analyticity for generalized porous medium equation in critical Fourier-Besov-Morrey spaces","authors":"Mohamed Toumlilin","doi":"10.30538/psrp-oma2019.0040","DOIUrl":null,"url":null,"abstract":"In this paper, we study the generalized porous medium equations with Laplacian and abstract pressure term. By using the Fourier localization argument and the Littlewood-Paley theory, we get global well-posedness results of this equation for small initial data u0 belonging to the critical Fourier-Besov-Morrey spaces. In addition, we also give the Gevrey class regularity of the solution.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2019.0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we study the generalized porous medium equations with Laplacian and abstract pressure term. By using the Fourier localization argument and the Littlewood-Paley theory, we get global well-posedness results of this equation for small initial data u0 belonging to the critical Fourier-Besov-Morrey spaces. In addition, we also give the Gevrey class regularity of the solution.