{"title":"3D Nanocomposite scaffold of TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) for wound healing","authors":"Yong Gao, N. Ismail, M. Yusoff, M. Razali","doi":"10.1680/jbibn.21.00054","DOIUrl":null,"url":null,"abstract":"3D nanocomposite scaffold is an important material for biomedical application owing to its compatibility and effectiveness compared with other types of nanocomposites. In this research, a unique 3D nanocomposite scaffold based on carrageenan biopolymer incorporating TiO2 nanotubes was successfully developed. Prior to the nanocomposite scaffold preparation, the TiO2 nanotubes as nanofiller were synthesized using the hydrothermal method. The synthesis of TiO2 nanotubes was incorporated into carrageenan for the fabrication of a 3D nanocomposite scaffold using the freeze-drying technique. The synthesized and fabricated materials were characterized using various techniques. Fourier-transform infrared spectroscopy and X-ray powder diffraction were employed to investigate the intermolecular interaction and phase structure of the fabricated TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) 3D nanocomposite scaffold. The morphology and microstructure were via scanning electron microscopy and transmission electron microscopy. The ability of TiO2NT/CG 3D nanocomposite scaffold for wound healing was tested in vitro and in vivo. The in vitro study on 3T3 mouse fibroblast cells demonstrated that the number of cells increased up to 190 K per well. Meanwhile, in vivo studies on Sprague Dawley rat exhibited that a 100% cure rate of wounds was observed after 14 days. These are attributed to the presence of ∼10-nm TiO2 nanotubes that are homogeneously distributed onto the scaffold, as proven by scanning electron microscopy. The TiO2 nanotubes promote wound healing by generating reactive oxygen species to induce the fibroblast growth factor and for the formation of a new extracellular matrix. The interconnected porous structure and rough surface of the TiO2/GG 3D nanocomposite scaffold also support cell proliferation to expedite wound healing, thus offering a good candidate for wound-dressing application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
3D nanocomposite scaffold is an important material for biomedical application owing to its compatibility and effectiveness compared with other types of nanocomposites. In this research, a unique 3D nanocomposite scaffold based on carrageenan biopolymer incorporating TiO2 nanotubes was successfully developed. Prior to the nanocomposite scaffold preparation, the TiO2 nanotubes as nanofiller were synthesized using the hydrothermal method. The synthesis of TiO2 nanotubes was incorporated into carrageenan for the fabrication of a 3D nanocomposite scaffold using the freeze-drying technique. The synthesized and fabricated materials were characterized using various techniques. Fourier-transform infrared spectroscopy and X-ray powder diffraction were employed to investigate the intermolecular interaction and phase structure of the fabricated TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) 3D nanocomposite scaffold. The morphology and microstructure were via scanning electron microscopy and transmission electron microscopy. The ability of TiO2NT/CG 3D nanocomposite scaffold for wound healing was tested in vitro and in vivo. The in vitro study on 3T3 mouse fibroblast cells demonstrated that the number of cells increased up to 190 K per well. Meanwhile, in vivo studies on Sprague Dawley rat exhibited that a 100% cure rate of wounds was observed after 14 days. These are attributed to the presence of ∼10-nm TiO2 nanotubes that are homogeneously distributed onto the scaffold, as proven by scanning electron microscopy. The TiO2 nanotubes promote wound healing by generating reactive oxygen species to induce the fibroblast growth factor and for the formation of a new extracellular matrix. The interconnected porous structure and rough surface of the TiO2/GG 3D nanocomposite scaffold also support cell proliferation to expedite wound healing, thus offering a good candidate for wound-dressing application.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.