Potential therapeutic role of melatonin in traumatic brain injury: A literature review

Q4 Biochemistry, Genetics and Molecular Biology
Kemal Ertilav
{"title":"Potential therapeutic role of melatonin in traumatic brain injury: A literature review","authors":"Kemal Ertilav","doi":"10.37212/JCNOS.584703","DOIUrl":null,"url":null,"abstract":"Oxidative stress induces excessive production of reactive oxygen species (ROS). ROS are including several free oxygen radicals such as singlet oxygen and superoxide radical. Excessive ROS production induces injuries of lipids, nucleic acids and proteins in several cells. Brain and neurons have a high amount of polyunsaturated fatty acids (PUFAs) and consumption of oxygen, but they have low level of antioxidant. Oxidative stress is controlled by several enzymatic and non-enzymatic antioxidants. One of the main nonenzymatic antioxidant is melatonin. Melatonin is secreted from the pineal gland by physiological circadian cycles. It has several physiological functions such as mediator of circannual reproductive rhythms (Tamtaji et al. 2019). However, it has also a regulatory role in the pathophysiological pathways of traumatic brain injury (TBI) in human and rodents (Barlow et al. 2019). TBI is one of the most common causes of the mortalities. Secondary events occur after primary events like shearing of nerve cells and blood vessels, cause posttraumatic neurodegenerations with an increase in ROS and ROS-mediated lipid peroxidation. It was reported that TBI-induced oxidative stress in experimental TBI was inhibited by the melatonin treatment (Senol and Naziroglu, 2014). Results of a recent study indicated protective role of melatonin through inhibition of Nrf2 signaling pathway, inflammation and oxidative stress in TBI-induced mice (Wang et al. 2019). In human studies, behavioral outcomes of TBI were modulated by the melatonin  treatment (Barlow et al. 2019). In the oral presentation, I will review recent studies on TBI in human and experimental animals.   In conclusion, there are pre-clinical and clinical evidences that melatonin treatment after TBI significantly improves both behavior-cognition outcomes and pathophysiological outcomes such as oxidative stress and inflammation. It seems that the certain interaction between melatonin and TBI still remain to be determined.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress induces excessive production of reactive oxygen species (ROS). ROS are including several free oxygen radicals such as singlet oxygen and superoxide radical. Excessive ROS production induces injuries of lipids, nucleic acids and proteins in several cells. Brain and neurons have a high amount of polyunsaturated fatty acids (PUFAs) and consumption of oxygen, but they have low level of antioxidant. Oxidative stress is controlled by several enzymatic and non-enzymatic antioxidants. One of the main nonenzymatic antioxidant is melatonin. Melatonin is secreted from the pineal gland by physiological circadian cycles. It has several physiological functions such as mediator of circannual reproductive rhythms (Tamtaji et al. 2019). However, it has also a regulatory role in the pathophysiological pathways of traumatic brain injury (TBI) in human and rodents (Barlow et al. 2019). TBI is one of the most common causes of the mortalities. Secondary events occur after primary events like shearing of nerve cells and blood vessels, cause posttraumatic neurodegenerations with an increase in ROS and ROS-mediated lipid peroxidation. It was reported that TBI-induced oxidative stress in experimental TBI was inhibited by the melatonin treatment (Senol and Naziroglu, 2014). Results of a recent study indicated protective role of melatonin through inhibition of Nrf2 signaling pathway, inflammation and oxidative stress in TBI-induced mice (Wang et al. 2019). In human studies, behavioral outcomes of TBI were modulated by the melatonin  treatment (Barlow et al. 2019). In the oral presentation, I will review recent studies on TBI in human and experimental animals.   In conclusion, there are pre-clinical and clinical evidences that melatonin treatment after TBI significantly improves both behavior-cognition outcomes and pathophysiological outcomes such as oxidative stress and inflammation. It seems that the certain interaction between melatonin and TBI still remain to be determined.
褪黑素在创伤性脑损伤中的潜在治疗作用:文献综述
氧化应激诱导活性氧(ROS)的过度产生。ROS包括几种自由氧自由基,如单线态氧和超氧化物自由基。过多的ROS产生会在几个细胞中诱导脂质、核酸和蛋白质的损伤。大脑和神经元含有大量的多不饱和脂肪酸(PUFA)和耗氧量,但它们的抗氧化剂水平较低。氧化应激是由几种酶和非酶抗氧化剂控制的。褪黑素是主要的非酶抗氧化剂之一。褪黑激素是通过生理昼夜节律从松果体分泌的。它具有多种生理功能,如循环生殖节律的介质(Tamtaji等人,2019)。然而,它在人类和啮齿类动物创伤性脑损伤(TBI)的病理生理途径中也具有调节作用(Barlow等人,2019)。创伤性脑损伤是造成死亡的最常见原因之一。次要事件发生在主要事件之后,如神经细胞和血管的剪切,导致创伤后神经退行性变,ROS和ROS介导的脂质过氧化增加。据报道,褪黑激素治疗可抑制实验性脑损伤中脑损伤诱导的氧化应激(Senol和Naziroglu,2014)。最近的一项研究结果表明,褪黑素通过抑制Nrf2信号通路、炎症和氧化应激在TBI诱导的小鼠中发挥保护作用(Wang等人,2019)。在人类研究中,脑脊髓炎的行为结果受到褪黑素治疗的调节(Barlow等人,2019)。在口头报告中,我将回顾最近关于人类和实验动物TBI的研究。总之,有临床前和临床证据表明,TBI后褪黑素治疗显著改善了行为认知结果和病理生理结果,如氧化应激和炎症。褪黑素和TBI之间的某些相互作用似乎仍有待确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信