Android Malware Detection Approach Using Stacked AutoEncoder and Convolutional Neural Networks

Pub Date : 2023-09-08 DOI:10.4018/ijiit.329956
Brahami Menaouer, Abdallah El Hadj Mohamed Islem, M. Nada
{"title":"Android Malware Detection Approach Using Stacked AutoEncoder and Convolutional Neural Networks","authors":"Brahami Menaouer, Abdallah El Hadj Mohamed Islem, M. Nada","doi":"10.4018/ijiit.329956","DOIUrl":null,"url":null,"abstract":"In the past decade, Android has become a standard smartphone operating system. The mobile devices running on the Android operating system are particularly interesting to malware developers, as the users often keep personal information on their mobile devices. This paper proposes a deep learning model for mobile malware detection and classification. It is based on SAE for reducing the data dimensionality. Then, a CNN is utilized to detect and classify malware apps in Android devices through binary visualization. Tests were carried out with an original Android application (Drebin-215) dataset consisting of 15,036 applications. The conducted experiments prove that the classification performance achieves high accuracy of about 98.50%. Other performance measures used in the study are precision, recall, and F1-score. Finally, the accuracy and results of these techniques are analyzed by comparing the effectiveness with previous works.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijiit.329956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the past decade, Android has become a standard smartphone operating system. The mobile devices running on the Android operating system are particularly interesting to malware developers, as the users often keep personal information on their mobile devices. This paper proposes a deep learning model for mobile malware detection and classification. It is based on SAE for reducing the data dimensionality. Then, a CNN is utilized to detect and classify malware apps in Android devices through binary visualization. Tests were carried out with an original Android application (Drebin-215) dataset consisting of 15,036 applications. The conducted experiments prove that the classification performance achieves high accuracy of about 98.50%. Other performance measures used in the study are precision, recall, and F1-score. Finally, the accuracy and results of these techniques are analyzed by comparing the effectiveness with previous works.
分享
查看原文
基于堆叠式自动编码器和卷积神经网络的安卓恶意软件检测方法
在过去的十年里,安卓系统已经成为标准的智能手机操作系统。运行在Android操作系统上的移动设备对恶意软件开发人员来说尤其有趣,因为用户经常在他们的移动设备上保存个人信息。本文提出了一种用于移动恶意软件检测和分类的深度学习模型。它基于SAE来降低数据维度。然后,利用CNN通过二进制可视化对安卓设备中的恶意软件应用程序进行检测和分类。使用由15036个应用程序组成的原始Android应用程序(Drebin-215)数据集进行测试。实验证明,分类性能达到了98.50%的高准确率。研究中使用的其他性能指标包括准确率、召回率和F1分数。最后,通过与以往工作的有效性比较,分析了这些技术的准确性和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信