{"title":"Lagrangian combinatorics of matroids","authors":"Federico Ardila, G. Denham, June Huh","doi":"10.5802/alco.263","DOIUrl":null,"url":null,"abstract":"The Lagrangian geometry of matroids was introduced in [ADH20] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions $\\gamma$ and $\\delta$ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski's conjecture that this h-vector is a log-concave sequence. This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial strengthening of the $h$-vector computation: we write the k-th mixed intersection of $\\gamma$ and $\\delta$ explicitly as a sum of biflags corresponding to the nbc-bases of internal activity k+1.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
The Lagrangian geometry of matroids was introduced in [ADH20] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions $\gamma$ and $\delta$ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski's conjecture that this h-vector is a log-concave sequence. This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial strengthening of the $h$-vector computation: we write the k-th mixed intersection of $\gamma$ and $\delta$ explicitly as a sum of biflags corresponding to the nbc-bases of internal activity k+1.