{"title":"Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces","authors":"S. Dragomir","doi":"10.2478/amsil-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ), \\mathcal{D}\\left( {w,\\mu } \\right)\\left( T \\right): = \\int_0^\\infty {w\\left( \\lambda \\right){{\\left( {\\lambda + T} \\right)}^{ - 1}}d\\mu \\left( \\lambda \\right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0≤-m𝒟′(w,μ)(δ)≤𝒟(w,μ)(A)-𝒟(w,μ)(B)≤-M𝒟′(w,μ)(α), 0 \\le - m\\mathcal{D}'\\left( {w,\\mu } \\right)\\left( \\delta \\right) \\le \\mathcal{D}\\left( {w,\\mu } \\right)\\left( A \\right) - \\mathcal{D}\\left( {w,\\mu } \\right)\\left( B \\right) \\le - M\\mathcal{D}'\\left( {w,\\mu } \\right)\\left( \\alpha \\right), where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. If f : [0, ∞) → ℝ is operator monotone on [0, ∞) with f (0) = 0, then 0≤mδ2[ f(δ)-f′(δ)δ≤f(A)A-1-f(B)B-1 ]≤Mα2[ f(α)-f′(α)α ]. \\matrix{ {0 \\le {m \\over {{\\delta ^2}}}\\left[ {f\\left( \\delta \\right) - f'\\left( \\delta \\right)\\delta \\le f\\left( A \\right){A^{ - 1}} - f{{\\left( B \\right)}^{B - 1}}} \\right]} \\cr { \\le {M \\over {{\\alpha ^2}}}\\left[ {f\\left( \\alpha \\right) - f'\\left( \\alpha \\right)\\alpha } \\right].} \\cr } Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"0 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ), \mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0≤-m𝒟′(w,μ)(δ)≤𝒟(w,μ)(A)-𝒟(w,μ)(B)≤-M𝒟′(w,μ)(α), 0 \le - m\mathcal{D}'\left( {w,\mu } \right)\left( \delta \right) \le \mathcal{D}\left( {w,\mu } \right)\left( A \right) - \mathcal{D}\left( {w,\mu } \right)\left( B \right) \le - M\mathcal{D}'\left( {w,\mu } \right)\left( \alpha \right), where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. If f : [0, ∞) → ℝ is operator monotone on [0, ∞) with f (0) = 0, then 0≤mδ2[ f(δ)-f′(δ)δ≤f(A)A-1-f(B)B-1 ]≤Mα2[ f(α)-f′(α)α ]. \matrix{ {0 \le {m \over {{\delta ^2}}}\left[ {f\left( \delta \right) - f'\left( \delta \right)\delta \le f\left( A \right){A^{ - 1}} - f{{\left( B \right)}^{B - 1}}} \right]} \cr { \le {M \over {{\alpha ^2}}}\left[ {f\left( \alpha \right) - f'\left( \alpha \right)\alpha } \right].} \cr } Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.