Certain Conditions for a Finsler Manifold to Be Isometric with a Finsler Sphere

IF 0.9 3区 数学 Q2 MATHEMATICS
S. Yin, Huarong Wang
{"title":"Certain Conditions for a Finsler Manifold to Be Isometric with a Finsler Sphere","authors":"S. Yin, Huarong Wang","doi":"10.1515/agms-2022-0142","DOIUrl":null,"url":null,"abstract":"Abstract We show that if there is a smooth function f on a Finsler n-space M satisfying Δ2f = −kfgΔf for a positive constant k, then M is diffeomorphic with the n-sphere 𝕊n, where g denotes the weighted Riemannian metric. Moreover, we further show that the manifold is isometric to a Finsler sphere if the Ricci curvature is bounded below by (n − [one.tf])k and the S-curvature vanishes.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"290 - 296"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We show that if there is a smooth function f on a Finsler n-space M satisfying Δ2f = −kfgΔf for a positive constant k, then M is diffeomorphic with the n-sphere 𝕊n, where g denotes the weighted Riemannian metric. Moreover, we further show that the manifold is isometric to a Finsler sphere if the Ricci curvature is bounded below by (n − [one.tf])k and the S-curvature vanishes.
Finsler流形与Finsler球面等距的若干条件
摘要我们证明了如果在Finsler n空间M上存在一个光滑函数f,对于正常数k满足Δ2f =−kfgΔf,则M与n球𝕊n是微分同态的,其中g表示权黎曼度规。此外,我们进一步证明了如果里奇曲率以(n−[1 .tf])k为界且s曲率消失,流形与Finsler球是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信