Central Configurations and Action Minimizing Orbits in Kite Four-Body Problem

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
B. Benhammouda, A. Mansur, M. Shoaib, I. Szücs-Csillik, D. Offin
{"title":"Central Configurations and Action Minimizing Orbits in Kite Four-Body Problem","authors":"B. Benhammouda, A. Mansur, M. Shoaib, I. Szücs-Csillik, D. Offin","doi":"10.1155/2020/5263750","DOIUrl":null,"url":null,"abstract":"In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical configurations. In each of the two cases, the existence of a continuous family of central configurations for positive masses is shown. We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical explorations via Poincare cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader dynamical context of the four-body problem.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"2020 1","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5263750","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2020/5263750","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical configurations. In each of the two cases, the existence of a continuous family of central configurations for positive masses is shown. We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical explorations via Poincare cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader dynamical context of the four-body problem.
风筝三体问题中的中心构型和最小作用轨道
在本文中,我们研究风筝四体问题,目的是在质量参数空间中识别出允许四个质量的相应中心构型的全局区域。我们考虑两种不同类型的对称构型。在这两种情况下,均证明了正质量中心构型连续族的存在性。我们讨论了周期解的动力学方面,并证明了经典作用泛函的最小值限制于同列解是开普勒椭圆解。最后,我们提供了通过庞加莱截面的数值探索,以显示在四体问题的更广泛的动力学背景下存在周期和准周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信